FPGA-based Low Latency Inverse QRD Architecture for Adaptive Beamforming in Phased Array Radars

Loading...
Thumbnail Image

Authors

Irfan, Raafia
Rasheed, Haroon Ur
Toor, Waqas Ahmed

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

The main objective of this paper is to facilitate the adaptive beamforming which is one of the most challenging task in phased array radars receivers. Recursive least square (RLS) is considered as the most well suited adaptive algorithm for the applications where beamforming is mandatory, because of its good numerical properties and convergence rate. In this paper, some RLS variants are discussed and the most numerically suitable algorithm Inverse QRD is selected for efficient adaptive beamforming. A novel architecture for IQRD RLS is also presented, which offers low latency and low area occupation for Field Programmable Gate Array (FPGA) implementation. This approach reduces the computations by utilizing the standard pipelining methodology. Hence, efficient adder and multipliers and LUT based solution for square root and division, has highly enhanced the performance of the algorithm. The proposed IQRD RLS architecture has been coded in Verilog and analyze its performance in terms of throughput, hardware resources and efficiency.

Description

Citation

Radioengineering. 2017 vol. 26, č. 3, s. 851-859. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2017/17_03_0851_0859.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO