A literature review of supply chain analyses integrating discrete simulation modelling and machine learning
Loading...
Date
Authors
Kogler, Christoph
Maxera, Pavel
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
Altmetrics
Abstract
Simulation and machine learning offer advanced methods to analyse complex flows, risks, and disruptions in supply chains. This literature review, based on a novel classification framework, traces the development of the research area from 2013 to 2025 and confirms intensified publication activities over the past 5 years. A majority of the analysed models merge discrete event simulation with reinforcement learning to cover an operational planning horizon and detailed to intermediate abstraction level. The comprehensive synthesis of 18 review articles, 72 research and conference papers, and 43 related studies explains integration approaches, discusses the current state of the art, and identifies research gaps. Existing individual limitations of discrete simulation and machine learning can be overcome by integrating those essential methods for supply chain analyses. This sets the stage for a new generation of models to plan, design, operate, control, and monitor supply chains in a sustainable, smart, and resilient way.
Simulation and machine learning offer advanced methods to analyse complex flows, risks, and disruptions in supply chains. This literature review, based on a novel classification framework, traces the development of the research area from 2013 to 2025 and confirms intensified publication activities over the past 5 years. A majority of the analysed models merge discrete event simulation with reinforcement learning to cover an operational planning horizon and detailed to intermediate abstraction level. The comprehensive synthesis of 18 review articles, 72 research and conference papers, and 43 related studies explains integration approaches, discusses the current state of the art, and identifies research gaps. Existing individual limitations of discrete simulation and machine learning can be overcome by integrating those essential methods for supply chain analyses. This sets the stage for a new generation of models to plan, design, operate, control, and monitor supply chains in a sustainable, smart, and resilient way.
Simulation and machine learning offer advanced methods to analyse complex flows, risks, and disruptions in supply chains. This literature review, based on a novel classification framework, traces the development of the research area from 2013 to 2025 and confirms intensified publication activities over the past 5 years. A majority of the analysed models merge discrete event simulation with reinforcement learning to cover an operational planning horizon and detailed to intermediate abstraction level. The comprehensive synthesis of 18 review articles, 72 research and conference papers, and 43 related studies explains integration approaches, discusses the current state of the art, and identifies research gaps. Existing individual limitations of discrete simulation and machine learning can be overcome by integrating those essential methods for supply chain analyses. This sets the stage for a new generation of models to plan, design, operate, control, and monitor supply chains in a sustainable, smart, and resilient way.
Description
Keywords
discrete event simulation; agent-based simulation; supply chain management; logistics; transportation; supervised , unsupervised , and reinforcement learning , discrete event simulation; agent-based simulation; supply chain management; logistics; transportation; supervised , unsupervised , and reinforcement learning
Citation
Journal of Simulation. 2025, p. 1-25.
https://www.tandfonline.com/doi/full/10.1080/17477778.2025.2500393
https://www.tandfonline.com/doi/full/10.1080/17477778.2025.2500393
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0001-9461-9477 