Sintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical response

dc.contributor.authorDrdlík, Danielcs
dc.contributor.authorSokolov, Ilyacs
dc.contributor.authorHadraba, Hynekcs
dc.contributor.authorChlup, Zdeněkcs
dc.contributor.authorDrdlíková, Katarinacs
dc.contributor.authorMaca, Karelcs
dc.coverage.issue19cs
dc.coverage.volume50cs
dc.date.accessioned2025-03-17T13:47:02Z
dc.date.available2025-03-17T13:47:02Z
dc.date.issued2024-08-27cs
dc.description.abstractInformation on the sintering activation energy is currently focused on evaluation of single-phase ceramic systems. This work shows the results of high-temperature dilatometry measurements of layered and particle composites based on alumina and zirconia. Layered composites with different layer thickness ratios and particle composites with variable composition in the entire concentration range were prepared by electrophoretic deposition allowing manufacturing composites with precious design and strongly bonded interfaces. The phenomena observed during the high-temperature dilatometry measurements are discussed, and the data were used to calculate the sintering activation energies of composites using the modified Master Sintering Curve concept. By covering a wide range of composite designs, it was possible to determine differences in activation energies and to show their dependence on the direction in the case of laminate composites given by the directionally dependent sintering behaviour. Sintering activation energies of layered composites were always higher than for monoliths due to constrained sintering showing maximum sintering activation energies at lower volumes of zirconia in the layers for longitudinal and transversal orientation of the samples. A similar trend was identified in particle composites due to slowed down alumina densification by the pinning effect. Additionally, mechanical properties represented by Vickers hardness and indentation elastic modulus were related to the microstructure developed during sintering. The effects of interconnectivity of phases present in the composites together with other parameters of the microstructure were described.en
dc.formattextcs
dc.format.extent37430-37440cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCERAMICS INTERNATIONAL. 2024, vol. 50, issue 19, p. 37430-37440.en
dc.identifier.doi10.1016/j.ceramint.2024.04.263cs
dc.identifier.issn1873-3956cs
dc.identifier.orcid0000-0003-4545-7779cs
dc.identifier.orcid0000-0003-3842-6675cs
dc.identifier.orcid0000-0002-7535-6920cs
dc.identifier.other188509cs
dc.identifier.researcheridE-1633-2012cs
dc.identifier.researcheridD-7520-2012cs
dc.identifier.scopus51863504600cs
dc.identifier.scopus6603065815cs
dc.identifier.urihttps://hdl.handle.net/11012/250110
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofCERAMICS INTERNATIONALcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0272884224016602cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-3956/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSinteringen
dc.subjectactivation energyen
dc.subjecthigh-temperature dilatometryen
dc.subjectlaminateen
dc.subjectparticle compositeen
dc.titleSintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical responseen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/EH/EH22_008/0004634cs
sync.item.dbidVAV-188509en
sync.item.dbtypeVAVen
sync.item.insts2025.03.17 14:47:02en
sync.item.modts2025.03.17 14:33:35en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. ÚMVI-odbor keramiky a polymerůcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilá multifunkční keramikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0272884224016602main.pdf
Size:
9.15 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0272884224016602main.pdf