Spectral library transfer between distinct Laser-Induced Breakdown Spectroscopy systems trained on simultaneous measurements

Loading...
Thumbnail Image

Authors

Vrábel, Jakub
Képeš, Erik
Nedělník, Pavel
Buday, Jakub
Cempírek, Jan
Pořízka, Pavel
Kaiser, Jozef

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Altmetrics

Abstract

The mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in Laser-Induced Breakdown Spectroscopy (LIBS). The cost related to setting up a new LIBS system is increased, as its extensive calibration is required. Solving the problem would enable inter-laboratory reference measurements and shared spectral libraries, which are fundamental for other spectroscopic techniques. We study a simplified version of this challenge where LIBS systems differ only in used spectrometers and collection optics but share all other parts of the apparatus, and collect spectra simultaneously from the same plasma plume. Extensive datasets measured as hyperspectral images of heterogeneous rock sample are used to train machine learning models that can transfer spectra between systems. The transfer is realized by a composed model that consists of a variational autoencoder (VAE) and a multilayer perceptron (MLP). The VAE is used to create a latent representation of spectra from the Primary system. Subsequently, spectra from the Secondary system are mapped to corresponding locations in the latent space by the MLP. The transfer is evaluated by several figures of merit (Euclidean and cosine distances, both spatially resolved; k-means clustering of transferred spectra). We demonstrate the viability of the method and compare it to several baseline approaches of varying complexity.
The mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in Laser-Induced Breakdown Spectroscopy (LIBS). The cost related to setting up a new LIBS system is increased, as its extensive calibration is required. Solving the problem would enable inter-laboratory reference measurements and shared spectral libraries, which are fundamental for other spectroscopic techniques. We study a simplified version of this challenge where LIBS systems differ only in used spectrometers and collection optics but share all other parts of the apparatus, and collect spectra simultaneously from the same plasma plume. Extensive datasets measured as hyperspectral images of heterogeneous rock sample are used to train machine learning models that can transfer spectra between systems. The transfer is realized by a composed model that consists of a variational autoencoder (VAE) and a multilayer perceptron (MLP). The VAE is used to create a latent representation of spectra from the Primary system. Subsequently, spectra from the Secondary system are mapped to corresponding locations in the latent space by the MLP. The transfer is evaluated by several figures of merit (Euclidean and cosine distances, both spatially resolved; k-means clustering of transferred spectra). We demonstrate the viability of the method and compare it to several baseline approaches of varying complexity.

Description

Citation

JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY. 2023, vol. 38, issue 4, p. 841-853.
https://pubs.rsc.org/en/content/articlelanding/2023/ja/d2ja00406b

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO