Faradaic Fenton Pixel: Reactive Oxygen Species Delivery Using Au/Cr Electrochemistry
Loading...
Date
Authors
Miglbauer, Eva
Abudllaeva, Oliya S.
Gryszel, Maciej
Glowacki, Eric Daniel
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-VCH
ORCID
Altmetrics
Abstract
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
Description
Citation
CHEMBIOCHEM. 2023, vol. 24, issue 17, p. 1-14.
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300353
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300353
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-0280-8017 