Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecogniton-on-the-Fly"

Loading...
Thumbnail Image

Authors

Muoz Martin, Jose Maria
Urso, Mario
Pumera, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-VCH
Altmetrics

Abstract

Herein, a general procedure for the synthesis of multifunctional MRs, which simultaneously exhibit i) chiral, ii) magnetic, and iii) fluorescent properties in combination with iv) self-propulsion, is reported. Self-propelled Ni@Pt superparamagnetic microrockets have been functionalized with fluorescent CdS quantum dots carrying a chiral host biomolecule as beta-cyclodextrin (beta-CD). The "on-the-fly" chiral recognition potential of MRs has been interrogated by taking advantage of the beta-CD affinity to supramolecularly accommodate different chiral biomolecules (i.e., amino acids). As a proof-of-concept, tryptophan enantiomers have been discriminated with a dual-mode (optical and electrochemical) readout. This approach paves the way to devise intelligent cargo micromachines with "built-in" chiral supramolecular recognition capabilities to elucidate the concept of "enantiorecognition-on-the-fly", which might be facilely customized by tailoring the supramolecular host-guest encapsulation.
Herein, a general procedure for the synthesis of multifunctional MRs, which simultaneously exhibit i) chiral, ii) magnetic, and iii) fluorescent properties in combination with iv) self-propulsion, is reported. Self-propelled Ni@Pt superparamagnetic microrockets have been functionalized with fluorescent CdS quantum dots carrying a chiral host biomolecule as beta-cyclodextrin (beta-CD). The "on-the-fly" chiral recognition potential of MRs has been interrogated by taking advantage of the beta-CD affinity to supramolecularly accommodate different chiral biomolecules (i.e., amino acids). As a proof-of-concept, tryptophan enantiomers have been discriminated with a dual-mode (optical and electrochemical) readout. This approach paves the way to devise intelligent cargo micromachines with "built-in" chiral supramolecular recognition capabilities to elucidate the concept of "enantiorecognition-on-the-fly", which might be facilely customized by tailoring the supramolecular host-guest encapsulation.

Description

Citation

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2022, vol. 61, issue 14, p. 1-7.
https://onlinelibrary.wiley.com/doi/10.1002/anie.202116090

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO