A Hybrid 3D Learning-and-Interaction-based Segmentation Approach Applied on CT Liver Volumes

dc.contributor.authorDanciu, Marius
dc.contributor.authorGordan, Mihaela
dc.contributor.authorFlorea, Camelia
dc.contributor.authorOrghidan, Radu
dc.contributor.authorSorantin, Erich
dc.contributor.authorVlaicu, Aurel
dc.coverage.issue1cs
dc.coverage.volume22cs
dc.date.accessioned2015-01-20T14:14:14Z
dc.date.available2015-01-20T14:14:14Z
dc.date.issued2013-04cs
dc.description.abstractMedical volume segmentation in various imaging modalities using real 3D approaches (in contrast to slice-by-slice segmentation) represents an actual trend. The increase in the acquisition resolution leads to large amount of data, requiring solutions to reduce the dimensionality of the segmentation problem. In this context, the real-time interaction with the large medical data volume represents another milestone. This paper addresses the twofold problem of the 3D segmentation applied to large data sets and also describes an intuitive neuro-fuzzy trained interaction method. We present a new hybrid semi-supervised 3D segmentation, for liver volumes obtained from computer tomography scans. This is a challenging medical volume segmentation task, due to the acquisition and inter-patient variability of the liver parenchyma. The proposed solution combines a learning-based segmentation stage (employing 3D discrete cosine transform and a probabilistic support vector machine classifier) with a post-processing stage (automatic and manual segmentation refinement). Optionally, an optimization of the segmentation can be achieved by level sets, using as initialization the segmentation provided by the learning-based solution. The supervised segmentation is applied on elementary cubes in which the CT volume is decomposed by tilling, thus ensuring a significant reduction of the data to be classified by the support vector machine into liver/not liver. On real volumes, the proposed approach provides good segmentation accuracy, with a significant reduction in the computational complexity.en
dc.formattextcs
dc.format.extent100-113cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2013, vol. 22, č. 1, s. 100-113. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/36805
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2013/13_01_0100_0113.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subject3D liver segmentationen
dc.subject3D DCTen
dc.subjectblocks level volume segmentationen
dc.subjectSVMen
dc.subject3D human-computer interactionen
dc.subjectsegmentation refinementen
dc.subject3D level set segmentationen
dc.subjectneuro-fuzzy interactionen
dc.titleA Hybrid 3D Learning-and-Interaction-based Segmentation Approach Applied on CT Liver Volumesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13_01_0100_0113.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections