Personal Voice Activity Detection

Loading...
Thumbnail Image

Date

Authors

Sedláček, Šimon

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce je implementovat, otestovat a vyhodnotit řečníkem podmíněnou metodu pro detekci hlasu ( Voice Activity Detection , VAD) nazvanou Personal VAD. Pro detekci využívá tato metoda LSTM neuronových sítí a jejím účelem je vytvoření systému schopného spolehlivě detekovat řečové signály cílového řečníka při zachování vlastností typického VAD systému co se velikosti modelu, odezvy a nízkých nároků na zdroje týče. Systém je trénován pro klasifikaci řečových rámců do tří tříd: neřeč, řeč necílového a řeč cílového řečníka. Za tímto účelem využívá metoda speaker embedding vektory pro reprezentaci cílového řečníka jako součást vstupních příznaků. Některé z náročnějších variant systému využívají skórování rámců systémem pro verifikaci řečníka, což vede ke zvýšení spolehlivosti klasifikace. Vedle základní metody skórování představené v originálním článku byly navrženy dvě modifikace, jež základní metodu překonaly a zlepšily spolehlivost výsledného systému i v akusticky náročných prostředích.
This work aims to implement, test, and evaluate a speaker-conditioned Voice Activity Detection (VAD) method called Personal VAD. The method builds upon an LSTM-based approach to VAD and its purpose is to introduce a system that can reliably detect speech of a target speaker, while retaining the typical characteristics of a VAD system, mainly in terms of small model size, low latency, and low necessary computational resources. The system is trained to distinguish between three classes: non-speech, target speaker speech, and non-target speaker speech. For this purpose, the method utilizes speaker embeddings as a part of the input feature vector to represent the target speaker. Some of the more heavyweight personal VAD variants also make use of speaker verification scores issued to each frame based on the target embedding, resulting in a more robust system. In addition to the one scoring method presented in the original article, two other scoring approaches are introduced, both outperforming the baseline method and improving the performance even for acoustically challenging conditions.

Description

Citation

SEDLÁČEK, Š. Personal Voice Activity Detection [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) doc. RNDr. Milan Češka, Ph.D. (člen) Ing. Filip Orság, Ph.D. (člen) RNDr. Marek Rychlý, Ph.D. (člen)

Date of acceptance

2021-06-16

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Můžete ještě jednou upřesnit, v čem spočívá vaše rozšíření oproti původní metodě? Myslíte, že je možné zkombinovat tradiční metody s vaší metodou využívající neuronové sítě?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO