Využití informací o nejistotě v ověřování mluvčího a diarizaci mluvčích

Abstract
Tato práce se zabývá dvěma modely, které umožňují využít informace o nejistotě v úlohách automatického ověřování mluvčího a diarizace mluvčích. První model, který zvažujeme, je modifikací široce používané gaussovské pravděpodobnostní lineární diskriminační analýzy (G-PLDA), modelující rozložení vektorových reprezentací promluv nazývaných embeddingy. V G-PLDA se předpokládá, že embeddingy jsou generovány přidáním šumového vektoru navzorkovaného z Gaussova rozložení k vektoru reprezentujícímu mluvčího. Ukazujeme, že za předpokladu, že šum byl místo toho vzorkován ze Studentova T-rozdělení, model PLDA (tuto verzi nazýváme PLDA s těžkým chvostem, heavy-tail, HT-PLDA) může při rozhodnutí o ověření mluvčího využít informace o nejistotě. Náš model je koncepčně podobný modelu HT-PLDA definovanému Kennym et al. v roce 2010, ale jak ukazujeme v této práci, umožňuje rychlé skórování, zatímco původní definice HT-PLDA je značně časové a výpočetně náročná. Představujeme algoritmus pro trénování naší verze HT-PLDA jako generativního modelu a zvažujeme rovněž různé strategie diskriminativního trénování parametrů tohoto modelu. Generativně a diskriminativně trénovanou HT-PLDA testujeme na úloze ověřování mluvčího. Výsledky naznačují, že HT-PLDA funguje podobně jako standardní G-PLDA, přičemž má výhodu v odolnosti vůči změnám v předzpracování dat. Experimenty s diarizací mluvčích ukazují, že HT-PLDA poskytuje nejen lepší výsledky než základní G-PLDA, ale skóre logaritmického poměru věrohodností (log-likelihood ratio, LLR) produkovaná tímto modelem jsou lépe kalibrována. Ve druhém modelu nepovažujeme (na rozdíl od HT-PLDA) embeddingy za pozorovaná data. Místo toho jsou v tomto modelu embeddingy normálně rozložené skryté proměnné. Přesnost (precision) embeddingů nese informaci o kvalitě řečového segmentu: u čistých dlouhých segmentů by přesnost měla být vysoká a u krátkých a zašuměných promluv by měla být nízká. Ukazujeme, jak lze takové pravděpodobnostní embeddingy začlenit do skórování založeného na G-PLDA, a jak parametry skrytého embeddingu ovlivňují jeho vliv při výpočtu věrohodností s tímto modelem. V experimentech demonstrujeme, jak lze využít existující extraktor embeddingů založený na neuronové síti (NN) k produkci nikoli embeddingu, ale parametrů pravděpodobnostního rozložení embeddingu. Pravděpodobnostní embeddingy testujeme na úloze diarizace mluvčích. Výsledky ukazují, že tento model poskytuje dobře kalibrovaná skóre LLR umožňující lepší diarizaci, pokud není k dispozici vývojová datová sada pro ladění shlukovacího algoritmu.
This thesis considers two models allowing to utilize uncertainty information in the tasks of Automatic Speaker Verification and Speaker Diarization. The first model we consider is a modification of the widely-used Gaussian Probabilistic Linear Discriminant Analysis (G-PLDA) that models the distribution of the vector utterance representations called embeddings. In G-PLDA, the embeddings are assumed to be generated by adding a noise vector sampled from a Gaussian distribution to a speakerdependent vector. We show that when assuming that the noise was instead sampled from a Student's T-distribution, the PLDA model (we call this version heavy-tailed PLDA) can use the uncertainty information when making the verification decisions. Our model is conceptually similar to the HT-PLDA model defined by Kenny et al. in 2010, but, as we show in this thesis, it allows for fast scoring, while the original HT-PLDA definition requires considerable time and computation resources for scoring. We present the algorithm to train our version of HT-PLDA as a generative model. Also, we consider various strategies for discriminatively training the parameters of the model. We test the performance of generatively and discriminatively trained HT-PLDA on the speaker verification task. The results indicate that HT-PLDA performs on par with the standard G-PLDA while having the advantage of being more robust against variations in the data pre-processing. Experiments on the speaker diarization demonstrate that the HT-PLDA model not only provides better performance than the G-PLDA baseline model but also has the advantage of producing better-calibrated Log-Likelihood Ratio (LLR) scores. In the second model, unlike in HT-PLDA, we do not consider the embeddings as the observed data. Instead, in this model, the embeddings are normally distributed hidden variables. The embedding precision carries the information about the quality of the speech segment: for clean long segments, the precision should be high, and for short and noisy utterances, it should be low. We show how such probabilistic embeddings can be incorporated into the G-PLDA framework and how the parameters of the hidden embedding influence its impact when computing the likelihood with this model. In the experiments, we demonstrate how to utilize an existing neural network (NN) embedding extractor to provide not embeddings but parameters of probabilistic embedding distribution. We test the performance of the probabilistic embeddings model on the speaker diarization task. The results demonstrate that this model provides well-calibrated LLR scores allowing for better diarization when no development dataset is available to tune the clustering algorithm.
Description
Citation
SILNOVA, A. Využití informací o nejistotě v ověřování mluvčího a diarizaci mluvčích [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Výpočetní technika a informatika
Comittee
prof. Ing. Tomáš Vojnar, Ph.D. (předseda) doc. RNDr. Tomáš Brázdil, Ph.D. (člen) prof. Mgr. Pavel Rajmic, Ph.D. (člen) doc. Ing. Václav Šmídl, Ph.D. (člen) Jesus Antonio Villalba Lopez (člen)
Date of acceptance
2022-12-20
Defence
The student presented the goals and results, which she achieved within the solution of the dissertation. The student has competently answered the questions of the committee members and reviewers. The discussion is recorded on the discussion sheets, which are attached to the protocol. Number of discussion sheets: 2. The committee has agreed unanimously that the student has fulfilled requirements for being awarded the academic title Ph.D. The committee recommends awarding the thesis the deans prize.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO