Extrakce informací z biomedicínských textů
Loading...
Date
Authors
Knoth, Petr
ORCID
Advisor
Referee
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
V poslední době bylo vynaloženo velké úsilí k tomu, aby byly biomedicínské znalosti, typicky uložené v podobě vědeckých článků, snadněji přístupné a bylo možné je efektivně sdílet. Ve skutečnosti ale nestrukturovaná podstata těchto textů způsobuje velké obtíže při použití technik pro získávání a vyvozování znalostí. Anotování entit nesoucích jistou sémantickou informaci v textu je prvním krokem k vytvoření znalosti analyzovatelné počítačem. V této práci nejdříve studujeme metody pro automatickou extrakci informací z textů přirozeného jazyka. Dále zhodnotíme hlavní výhody a nevýhody současných systémů pro extrakci informací a na základě těchto znalostí se rozhodneme přijmout přístup strojového učení pro automatické získávání exktrakčních vzorů při našich experimentech. Bohužel, techniky strojového učení často vyžadují obrovské množství trénovacích dat, která může být velmi pracné získat. Abychom dokázali čelit tomuto nepříjemnému problému, prozkoumáme koncept tzv. bootstrapping techniky. Nakonec ukážeme, že během našich experimentů metody strojového učení pracovaly dostatečně dobře a dokonce podstatně lépe než základní metody. Navíc v úloze využívající techniky bootstrapping se podařilo významně snížit množství dat potřebných pro trénování extrakčního systému.
Recently, there has been much effort in making biomedical knowledge, typically stored in scientific articles, more accessible and interoperable. As a matter of fact, the unstructured nature of such texts makes it difficult to apply knowledge discovery and inference techniques. Annotating information units with semantic information in these texts is the first step to make the knowledge machine-analyzable. In this work, we first study methods for automatic information extraction from natural language text. Then we discuss the main benefits and disadvantages of the state-of-art information extraction systems and, as a result of this, we adopt a machine learning approach to automatically learn extraction patterns in our experiments. Unfortunately, machine learning techniques often require a huge amount of training data, which can be sometimes laborious to gather. In order to face up to this tedious problem, we investigate the concept of weakly supervised or bootstrapping techniques. Finally, we show in our experiments that our machine learning methods performed reasonably well and significantly better than the baseline. Moreover, in the weakly supervised learning task we were able to substantially bring down the amount of labeled data needed for training of the extraction system.
Recently, there has been much effort in making biomedical knowledge, typically stored in scientific articles, more accessible and interoperable. As a matter of fact, the unstructured nature of such texts makes it difficult to apply knowledge discovery and inference techniques. Annotating information units with semantic information in these texts is the first step to make the knowledge machine-analyzable. In this work, we first study methods for automatic information extraction from natural language text. Then we discuss the main benefits and disadvantages of the state-of-art information extraction systems and, as a result of this, we adopt a machine learning approach to automatically learn extraction patterns in our experiments. Unfortunately, machine learning techniques often require a huge amount of training data, which can be sometimes laborious to gather. In order to face up to this tedious problem, we investigate the concept of weakly supervised or bootstrapping techniques. Finally, we show in our experiments that our machine learning methods performed reasonably well and significantly better than the baseline. Moreover, in the weakly supervised learning task we were able to substantially bring down the amount of labeled data needed for training of the extraction system.
Description
Citation
KNOTH, P. Extrakce informací z biomedicínských textů [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Inteligentní systémy
Comittee
Date of acceptance
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení