Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations

dc.contributor.authorŠremr, Jiřícs
dc.coverage.issue62cs
dc.coverage.volume2021cs
dc.date.accessioned2021-09-29T14:55:48Z
dc.date.available2021-09-29T14:55:48Z
dc.date.issued2021-09-08cs
dc.description.abstractThe paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.en
dc.formattextcs
dc.format.extent1-33cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationElectronic Journal of Qualitative Theory of Differential Equations. 2021, vol. 2021, issue 62, p. 1-33.en
dc.identifier.doi10.14232/ejqtde.2021.1.62cs
dc.identifier.issn1417-3875cs
dc.identifier.other172441cs
dc.identifier.urihttp://hdl.handle.net/11012/201678
dc.language.isoencs
dc.publisherBolyai Institute, University of Szegedcs
dc.relation.ispartofElectronic Journal of Qualitative Theory of Differential Equationscs
dc.relation.urihttp://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9185cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1417-3875/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPositive periodic solutionen
dc.subjectsecond-order differential equationen
dc.subjectDuffing equationen
dc.subjectexistenceen
dc.subjectuniquenessen
dc.subjectmultiplicityen
dc.titleExistence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-172441en
sync.item.dbtypeVAVen
sync.item.insts2021.10.03 20:53:35en
sync.item.modts2021.10.03 20:14:16en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
p9185.pdf
Size:
689.11 KB
Format:
Adobe Portable Document Format
Description:
p9185.pdf