Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations
Loading...
Files
Date
Authors
Šremr, Jiří
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Bolyai Institute, University of Szeged
ORCID
Altmetrics
Abstract
The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.
The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.
The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(\omega), u'(0)=u'(\omega), where p, f\in L([0,\omega]) and q : [0,\omega]\times R\to R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^\lambda\sgn u+f (t), with \lambda>1 and a non-negative h\in L([0,\omega]). We allow the coefficient p and the forcing term f to change their signs.
Description
Citation
Electronic Journal of Qualitative Theory of Differential Equations. 2021, vol. 2021, issue 62, p. 1-33.
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9185
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9185
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-3983-4219 