Recursive identification of time-varying Hammerstein systems with matrix forgetting

Loading...
Thumbnail Image

Authors

Dokoupil, Jakub
Václavek, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

The real-time estimation of the time-varying Hammerstein system by using a noniterative learning schema is considered and extended to incorporate a matrix forgetting factor. The estimation is cast in a variational-Bayes framework to best emulate the original posterior distribution of the parameters within the set of distributions with feasible moments. The recursive concept we propose approximates the exact posterior comprising undistorted information about the estimated parameters. In many practical settings, the incomplete model of parameter variations is compensated by forgetting of obsolete information. As a rule, the forgetting operation is initiated by the inclusion of an appropriate prediction alternative into the time update. It is shown that the careful formulation of the prediction alternative, which relies on Bayesian conditioning, results in partial forgetting. This article inspects two options with respect to the order of the conditioning in the posterior, which proves vital in the successful localization of the source of inconsistency in the data-generating process. The geometric mean of the discussed alternatives then modifies recursive learning through the matrix forgetting factor. We adopt the decision-making approach to revisit the posterior uncertainty by dynamically allocating the probability to each of the prediction alternatives to be combined.
The real-time estimation of the time-varying Hammerstein system by using a noniterative learning schema is considered and extended to incorporate a matrix forgetting factor. The estimation is cast in a variational-Bayes framework to best emulate the original posterior distribution of the parameters within the set of distributions with feasible moments. The recursive concept we propose approximates the exact posterior comprising undistorted information about the estimated parameters. In many practical settings, the incomplete model of parameter variations is compensated by forgetting of obsolete information. As a rule, the forgetting operation is initiated by the inclusion of an appropriate prediction alternative into the time update. It is shown that the careful formulation of the prediction alternative, which relies on Bayesian conditioning, results in partial forgetting. This article inspects two options with respect to the order of the conditioning in the posterior, which proves vital in the successful localization of the source of inconsistency in the data-generating process. The geometric mean of the discussed alternatives then modifies recursive learning through the matrix forgetting factor. We adopt the decision-making approach to revisit the posterior uncertainty by dynamically allocating the probability to each of the prediction alternatives to be combined.

Description

Citation

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. 2023, vol. 68, issue 5, p. 3078-3085.
https://ieeexplore.ieee.org/document/9815531

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO