Transformer-based Semantic Segmentation for Large-Scale Building Footprint Extraction from Very-High Resolution Satellite Images
dc.contributor.author | Gibril, Mohamed Barakat A. | cs |
dc.contributor.author | Al-Ruzouq, Rami | cs |
dc.contributor.author | Shanableh, Abdallah | cs |
dc.contributor.author | Jena, Ratiranjan | cs |
dc.contributor.author | Bolcek, Jan | cs |
dc.contributor.author | Zulhaidi Mohd Shafri, Helmi | cs |
dc.contributor.author | Ghorbanzadeh, Omid | cs |
dc.coverage.issue | 10 | cs |
dc.coverage.volume | 73 | cs |
dc.date.issued | 2024-03-09 | cs |
dc.description.abstract | Extracting building footprints from extensive very-high spatial resolution (VHSR) remote sensing data is crucial for diverse applications, including surveying, urban studies, population estimation, identification of informal settlements, and disaster management. Although convolutional neural networks (CNNs) are commonly utilized for this purpose, their effectiveness is constrained by limitations in capturing long-range relationships and contextual details due to the localized nature of convolution operations. This study introduces the masked-attention mask transformer (Mask2Former), based on the Swin Transformer, for building footprint extraction from large-scale satellite imagery. To enhance the capture of large-scale semantic information and extract multiscale features, a hierarchical vision transformer with shifted windows (Swin Transformer) serves as the backbone network. An extensive analysis compares the efficiency and generalizability of Mask2Former with four CNN models (PSPNet, DeepLabV3+, UpperNet-ConvNext, and SegNeXt) and two transformer-based models (UpperNet-Swin and SegFormer) featuring different complexities. Results reveal superior performance of transformer-based models over CNN-based counterparts, showcasing exceptional generalization across diverse testing areas with varying building structures, heights, and sizes. Specifically, Mask2Former with the Swin transformer backbone achieves a mean intersection over union between 88% and 93%, along with a mean F-score (mF-score) ranging from 91% to 96.35% across various urban landscapes. | en |
dc.format | text | cs |
dc.format.extent | 4937 -4954 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | ADVANCES IN SPACE RESEARCH. 2024, vol. 73, issue 10, p. 4937 -4954. | en |
dc.identifier.doi | 10.1016/j.asr.2024.03.002 | cs |
dc.identifier.issn | 1879-1948 | cs |
dc.identifier.orcid | 0009-0008-0271-6543 | cs |
dc.identifier.other | 188212 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/245513 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | ADVANCES IN SPACE RESEARCH | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0273117724002205 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1879-1948/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | remote sensing | en |
dc.subject | satellite imagery | en |
dc.subject | Mask2former | en |
dc.subject | CNN | en |
dc.subject | Swin Transformer | en |
dc.subject | vision transformer | en |
dc.title | Transformer-based Semantic Segmentation for Large-Scale Building Footprint Extraction from Very-High Resolution Satellite Images | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-188212 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:41:51 | en |
sync.item.modts | 2025.01.17 16:43:43 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S0273117724002205main.pdf
- Size:
- 11.51 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S0273117724002205main.pdf