Research of the Defects in Anesthetic Masks

dc.contributor.authorLaucka, Andrius
dc.contributor.authorAndriukaitis, Darius
dc.coverage.issue4cs
dc.coverage.volume24cs
dc.date.accessioned2016-01-06T08:08:12Z
dc.date.available2016-01-06T08:08:12Z
dc.date.issued2015-12cs
dc.description.abstractThe article concerns the computer-assisted vision system created for the detection of the disposable anesthetic respiratory masks. This article provides the classification of defects which may be common to both rubber and plastic parts of the masks. The defects were divided into groups and the nature of them was investigated. The algorithms and methods for the detection of defective products were based on the segmentation of image and the detection of uneven contours. The experiment results are presented in this work. With reference to the results, the most effective masks’ filters were identified. The achieved specificity of the computer vision system is 100 % and the sensitivity is 100 %.en
dc.formattextcs
dc.format.extent1033-1043cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2015 vol. 24, č. 4, s. 1033-1043. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2015.1033en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/51904
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2015/15_04_1033_1043.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectImage processingen
dc.subjectcomputer visionen
dc.subjectimage segmentationen
dc.subjectsmoothing methodsen
dc.titleResearch of the Defects in Anesthetic Masksen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15_04_1033_1043.pdf
Size:
44.46 MB
Format:
Adobe Portable Document Format
Description:
Collections