Hunting Network Anomalies in a Railway Axle Counter System

Loading...
Thumbnail Image

Authors

Kuchař, Karel
Holasová, Eva
Pospíšil, Ondřej
Ruotsalainen, Henri
Fujdiak, Radek
Wagner, Adrian

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper presents a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. In contrast to the state-of-the-art works, our experimental results are validated with testbed-based real-world axle counting components. Furthermore, we aimed to detect targeted attacks on axle counting systems, which have higher impacts than conventional network attacks. W present a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. According to our findings, the proposed machine learning-based models were able to categorize six different network states (normal and under attack). The overall accuracy of the initial models was ca. 70–100% for the test data set in laboratory conditions. In operational conditions, the accuracy decreased to under 50%. To increase the accuracy, we introduce a novel input data-preprocessing method with the denoted gamma parameter. This increased the accuracy of the deep neural network model to 69.52% for six labels, 85.11% for five labels, and 92.02% for two labels. The gamma parameter also removed the dependence on the time series, enabled relevant classification of data in the real network, and increased the accuracy of the model in real operations. This parameter is influenced by simulated attacks and, thus, allows the classification of traffic into specified classes.
This paper presents a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. In contrast to the state-of-the-art works, our experimental results are validated with testbed-based real-world axle counting components. Furthermore, we aimed to detect targeted attacks on axle counting systems, which have higher impacts than conventional network attacks. W present a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. According to our findings, the proposed machine learning-based models were able to categorize six different network states (normal and under attack). The overall accuracy of the initial models was ca. 70–100% for the test data set in laboratory conditions. In operational conditions, the accuracy decreased to under 50%. To increase the accuracy, we introduce a novel input data-preprocessing method with the denoted gamma parameter. This increased the accuracy of the deep neural network model to 69.52% for six labels, 85.11% for five labels, and 92.02% for two labels. The gamma parameter also removed the dependence on the time series, enabled relevant classification of data in the real network, and increased the accuracy of the model in real operations. This parameter is influenced by simulated attacks and, thus, allows the classification of traffic into specified classes.

Description

Citation

SENSORS. 2023, vol. 23, issue 6, p. 1-19.
https://www.mdpi.com/1424-8220/23/6/3122

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO