Vision-Based Autonomous UAV Tracking and Control

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorBartoněk, Josef
dc.contributor.authorJanoušek, Jiří
dc.date.accessioned2025-07-30T10:03:10Z
dc.date.available2025-07-30T10:03:10Z
dc.date.issued2025cs
dc.description.abstractThis paper presents a vision-based control approach for unmanned aerial vehicles (UA Vs), focusing on the detection and tracking of airborne objects. The proposed system integrates deep-learning-based object detection using YOLO models with computationally efficient tracking algorithms to ensure realtime performance. The control methodology involves extracting positional information from visual data and generating attitude commands to regulate UA V movement via MA VLink communication. The implementation is optimized for deployment on a Raspberry Pi 5, leveraging OpenCV and NCNN frameworks. Experimental results demonstrate the system’s capability to detect and track small UA Vs while maintaining high frame rates, enabling reliable feedback-based flight adjustments.en
dc.formattextcs
dc.format.extent128-131cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 128-131. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.128
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255336
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectUAVen
dc.subjectdroneen
dc.subjectdetectionen
dc.subjecttrackingen
dc.titleVision-Based Autonomous UAV Tracking and Controlen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
128-Bartonek.pdf
Size:
1 MB
Format:
Adobe Portable Document Format