Vision-Based Autonomous UAV Tracking and Control
Loading...
Files
Date
Authors
Bartoněk, Josef
Janoušek, Jiří
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Altmetrics
Abstract
This paper presents a vision-based control approach for unmanned aerial vehicles (UA Vs), focusing on the detection and tracking of airborne objects. The proposed system integrates deep-learning-based object detection using YOLO models with computationally efficient tracking algorithms to ensure realtime performance. The control methodology involves extracting positional information from visual data and generating attitude commands to regulate UA V movement via MA VLink communication. The implementation is optimized for deployment on a Raspberry Pi 5, leveraging OpenCV and NCNN frameworks. Experimental results demonstrate the system’s capability to detect and track small UA Vs while maintaining high frame rates, enabling reliable feedback-based flight adjustments.
Description
Citation
Proceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 128-131. ISBN 978-80-214-6320-2
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdf
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
