Detection Of Anatomical Structures In Ct Data Using Convolutional Neural Networks

but.event.date26.04.2018cs
but.event.titleStudent EEICT 2018cs
dc.contributor.authorKozlová, Dominika
dc.date.accessioned2019-03-04T10:05:41Z
dc.date.available2019-03-04T10:05:41Z
dc.date.issued2018cs
dc.description.abstractThis paper deals with a detection of anatomical structures in medical images using convolutional neural networks (CNN). The designed algorithm contains 2 methods for region proposals and CNN for their classification into categories. Output of the CNN is then postprocessed to obtain the detection result. Categories for detection are head, spine, heart, left and right lung, aorta, liver, left and right kidney, spleen and background. For training and validation of the network were created 2 sets of CT data with annotated areas of selected structures.en
dc.formattextcs
dc.format.extent194-196cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 24th Conference STUDENT EEICT 2018. s. 194-196. ISBN 978-80-214-5614-3cs
dc.identifier.isbn978-80-214-5614-3
dc.identifier.urihttp://hdl.handle.net/11012/138211
dc.language.isoczcs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 24th Conference STUDENT EEICT 2018en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectdetectionen
dc.subjectconvolutional neural networken
dc.subjectregion proposalen
dc.subjectselective searchen
dc.titleDetection Of Anatomical Structures In Ct Data Using Convolutional Neural Networksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eeict2018-194.pdf
Size:
765.31 KB
Format:
Adobe Portable Document Format
Description: