Detection Of Anatomical Structures In Ct Data Using Convolutional Neural Networks
but.event.date | 26.04.2018 | cs |
but.event.title | Student EEICT 2018 | cs |
dc.contributor.author | Kozlová, Dominika | |
dc.date.accessioned | 2019-03-04T10:05:41Z | |
dc.date.available | 2019-03-04T10:05:41Z | |
dc.date.issued | 2018 | cs |
dc.description.abstract | This paper deals with a detection of anatomical structures in medical images using convolutional neural networks (CNN). The designed algorithm contains 2 methods for region proposals and CNN for their classification into categories. Output of the CNN is then postprocessed to obtain the detection result. Categories for detection are head, spine, heart, left and right lung, aorta, liver, left and right kidney, spleen and background. For training and validation of the network were created 2 sets of CT data with annotated areas of selected structures. | en |
dc.format | text | cs |
dc.format.extent | 194-196 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 24th Conference STUDENT EEICT 2018. s. 194-196. ISBN 978-80-214-5614-3 | cs |
dc.identifier.isbn | 978-80-214-5614-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/138211 | |
dc.language.iso | cz | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 24th Conference STUDENT EEICT 2018 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | detection | en |
dc.subject | convolutional neural network | en |
dc.subject | region proposal | en |
dc.subject | selective search | en |
dc.title | Detection Of Anatomical Structures In Ct Data Using Convolutional Neural Networks | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eeict2018-194.pdf
- Size:
- 765.31 KB
- Format:
- Adobe Portable Document Format
- Description: