Classification Of Traffic Signs By Convolutional Neural Networks
but.event.date | 26.04.2018 | cs |
but.event.title | Student EEICT 2018 | cs |
dc.contributor.author | Mivalt, Filip | |
dc.contributor.author | Nejedly, Petr | |
dc.date.accessioned | 2019-03-04T10:05:41Z | |
dc.date.available | 2019-03-04T10:05:41Z | |
dc.date.issued | 2018 | cs |
dc.description.abstract | The paper presented here describes traffic signs classification method based on a convolutional neural network (CNN). The CNN was trained and tested on the public database of German traffic signs with 43 mostly used traffic sign types. Proposed technique achieved overall classification F1 score 89.97 percent on a hidden testing dataset. | en |
dc.format | text | cs |
dc.format.extent | 188-190 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 24th Conference STUDENT EEICT 2018. s. 188-190. ISBN 978-80-214-5614-3 | cs |
dc.identifier.isbn | 978-80-214-5614-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/138209 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 24th Conference STUDENT EEICT 2018 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Machine learning | en |
dc.subject | Convolutional neural networks | en |
dc.subject | Traffic signs recognition | en |
dc.title | Classification Of Traffic Signs By Convolutional Neural Networks | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eeict2018-188.pdf
- Size:
- 587.91 KB
- Format:
- Adobe Portable Document Format
- Description: