Tailoring the internal microstructue of the hydrogels based on poly-HEMA targeted for drug delivery systems

Loading...
Thumbnail Image
Date
2022-01-01
Authors
Trudičová, Monika
Papežíková, Hana
Sedláček, Petr
Pekař, Miloslav
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
TANGER Ltd.
Altmetrics
Abstract
The transport and barrier properties are important material characteristics in terms of the development of the targeted drug delivery systems. Therefore, this work focused on the study of the possibility of influencing these properties and internal architecture in a model hydrogel system formed by a semi-interpenetrating polymer network with an incorporated polyelectrolyte component. Due to its application potential and its extensive use in medicine, poly(2-hydroxyethyl methacrylate) was chosen as the model hydrogel system for this work. Sodium polystyrene sulfonate was used as the interpenetrating linear polymer. Scanning electron microscopy was used to examine the structure of the three-dimensional hydrogel network. Transport properties were monitored by diffusion tests. Furthermore, diffusion through the hydrogel (barrier properties) was monitored using diffusion cells (Franz cells, horizontal cells). The usability of the semi-interpenetrating polymer network concept for the preparation of materials with tunable relevant properties was confirmed on the proposed materials.
Description
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO