Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization

dc.contributor.authorMoravčíková de Almeida Gouvea, Larissacs
dc.contributor.authorMoravčík, Igorcs
dc.contributor.authorPouchlý, Václavcs
dc.contributor.authorKováčová, Zuzanacs
dc.contributor.authorKitzmantel, Michaelcs
dc.contributor.authorNeubauer, Erichcs
dc.contributor.authorDlouhý, Ivocs
dc.coverage.issue19cs
dc.coverage.volume14cs
dc.date.accessioned2021-12-06T11:51:01Z
dc.date.available2021-12-06T11:51:01Z
dc.date.issued2021-10-01cs
dc.description.abstractThis paper reports the microstructural evolution and mechanical properties of a low-density Al0.3NbTa0.8Ti1.5V0.2Zr refractory high-entropy alloy (RHEA) prepared by means of a combination of mechanical alloying and spark plasma sintering (SPS). Prior to sintering, the morphology, chemical homogeneity and crystal structures of the powders were thoroughly investigated by varying the milling times to find optimal conditions for densification. The sintered bulk RHEAs were produced with diverse feedstock powder conditions. The microstructural development of the materials was analyzed in terms of phase composition and constitution, chemical homogeneity, and crystallographic properties. Hardness and elastic constants also were measured. The calculation of phase diagrams (CALPHAD) was performed to predict the phase changes in the alloy, and the results were compared with the experiments. Milling time seems to play a significant role in the contamination level of the sintered materials. Even though a protective atmosphere was used in the entire manufacturing process, carbide formation was detected in the sintered bulks as early as after 3 h of powder milling. Oxides were observed after 30 h due to wear of the high-carbon steel milling media and SPS consolidation. Ten hours of milling seems sufficient for achieving an optimal equilibrium between microstructural homogeneity and refinement, high hardness and minimal contamination.</p>en
dc.formattextcs
dc.format.extent1-21cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials . 2021, vol. 14, issue 19, p. 1-21.en
dc.identifier.doi10.3390/ma14195796cs
dc.identifier.issn1996-1944cs
dc.identifier.other174953cs
dc.identifier.urihttp://hdl.handle.net/11012/203069
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMaterialscs
dc.relation.urihttps://www.mdpi.com/1996-1944/14/19/5796cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1944/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectrefractory complex concentrated alloysen
dc.subjectmicrostructuresen
dc.subjectmechanical alloyingen
dc.subjectspark plasma sinteringen
dc.subjectmechanical propertiesen
dc.titleTailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimizationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-174953en
sync.item.dbtypeVAVen
sync.item.insts2022.01.11 12:54:34en
sync.item.modts2022.01.11 12:15:23en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Inovační technologie v keramicecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials1405796v2.pdf
Size:
7.92 MB
Format:
Adobe Portable Document Format
Description:
materials1405796v2.pdf