MXene 3D/4D Printing: Ink Formulation and Electrochemical Energy Storage Applications
dc.contributor.author | Nouseen, Shaista | cs |
dc.contributor.author | Pumera, Martin | cs |
dc.coverage.issue | 17 | cs |
dc.coverage.volume | 35 | cs |
dc.date.accessioned | 2025-05-27T09:57:18Z | |
dc.date.available | 2025-05-27T09:57:18Z | |
dc.date.issued | 2025-04-01 | cs |
dc.description.abstract | 2D MXenes are a rapidly expanding class of 2D materials with a broad spectrum of electrochemical applications, particularly in the electrochemical energy storage area. Concurrently, 3D and 4D printing techniques have garnered significant research attention offering customized designs, rapid prototyping, and cost-effective scalable production. Integrating MXene into the 3D/4D printed structures offers a promising path for the development of advanced electrochemical energy storage devices, with the combination of outstanding properties of MXene and the versatility of printing technology. The present article provides a comprehensive report on MXene printing technologies, focusing on their rheological characteristics, surface chemistry, ink formulation, stability, and storage. Different printing techniques, including 3D/4D printing, screen printing, inkjet printing, and continuous liquid interface production (CLIP) methods-are discussed in the context of MXene integration. Additionally, the application of printed MXene materials in electrochemical energy storage devices, such as supercapacitors and batteries, is explored along with future directions in evolving fields. | en |
dc.format | text | cs |
dc.format.extent | 1-36 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Advanced functional materials. 2025, vol. 35, issue 17, p. 1-36. | en |
dc.identifier.doi | 10.1002/adfm.202421987 | cs |
dc.identifier.issn | 1616-3028 | cs |
dc.identifier.orcid | 0000-0001-5846-2951 | cs |
dc.identifier.other | 197869 | cs |
dc.identifier.researcherid | F-2724-2010 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/251068 | |
dc.language.iso | en | cs |
dc.publisher | WILEY-V C H | cs |
dc.relation.ispartof | Advanced functional materials | cs |
dc.relation.uri | https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202421987 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1616-3028/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | 2D materials | en |
dc.subject | 3D printing | en |
dc.subject | 4D printing | en |
dc.subject | electrochemical energy applications | en |
dc.subject | MXenes | en |
dc.title | MXene 3D/4D Printing: Ink Formulation and Electrochemical Energy Storage Applications | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-197869 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.05.27 11:57:18 | en |
sync.item.modts | 2025.05.27 11:33:41 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovace | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2025Nouseen.pdf
- Size:
- 13.36 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 2025Nouseen.pdf