Local Features and Takagi-Sugeno Fuzzy Logic based Medical Image Segmentation

dc.contributor.authorJaved, Umer
dc.contributor.authorRiaz, Muhammad Mohsin
dc.contributor.authorGhafoor, Abdul
dc.contributor.authorCheema, Tanveer Ahmed
dc.coverage.issue4cs
dc.coverage.volume22cs
dc.date.accessioned2015-01-21T14:45:00Z
dc.date.available2015-01-21T14:45:00Z
dc.date.issued2013-12cs
dc.description.abstractThis paper presents an improved region scalable fitting model that uses fuzzy weighted local features and active contour model for medical image segmentation. Local variance is used with local entropy to extract the regional information from the image which is then processed with the Takagi-Sugeno fuzzy system to compute weights. The use of regional descriptors enables this model to segment the inhomogeneous intensity images. The proposed objective function is minimized by using level set function. Performance evaluation of the proposed and existing model is achieved with the help of a Probability Rand Index, Global Consistency Error, the number of iterations and computation time taken. Extensive experiments on a series of real X-ray and MRI medical images shows the proposed technique offers better segmentation accuracy in lesser number of iterations and computation time.en
dc.formattextcs
dc.format.extent1091-1097cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2013, vol. 22, č. 4, s. 1091-1097. issn 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/36962
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2013/13_04_1091_1097.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectImage segmentationen
dc.subjectfuzzy logicen
dc.subjectactive contoursen
dc.titleLocal Features and Takagi-Sugeno Fuzzy Logic based Medical Image Segmentationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13_04_1091_1097.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections