An Enhanced Approach to Despeckle SAR Images

Loading...
Thumbnail Image

Authors

Anandhi, Duraipakkiam
Valli, Shanmugam

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Synthetic Aperture Radar (SAR) image processing plays a vital role in observing the earth and in understanding its varied features. A SAR image contains edges and shapes hidden by speckle noise. Therefore, despeckling is essential for subsequent feature extraction and classification. This paper presents a new despeckling method based on Non-subsampled Contourlet Transform (NSCT) and Bayesian Maximum A Posterior (BMAP) estimation. NSCT effectively captures the SAR image features as multi-scale and multidirectional information. BMAP is a point estimation based on statistical prior distribution. So, BMAP estimation represents the aggregate behavior in each direction of the NSCT neighborhood coefficients using the statistical prior models. The dependency relationship of NSCT neighborhood coefficients by the statistical priors and BMAP of point estimation shrinks the speckle noise coefficients. In this work, the NSCT higher frequency coefficients are de-speckled, since higher frequency coefficients contains more detail and more noise. This despeckling method is compared with the state-of-the-art methods using a set of reference and non-referenced quality metrics. Experimental results show that this developed method is superior to the other methods used for preserving information and for eliminating speckle noise.

Description

Citation

Radioengineering. 2018 vol. 27, č. 3, s. 864-875. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_03_0864_0875.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO