Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of Epoxy Resin

dc.contributor.authorSobola, Dinaracs
dc.contributor.authorAL Soud, Ammarcs
dc.contributor.authorKnápek, Alexandrcs
dc.contributor.authorM. Hamasha, Safeiacs
dc.contributor.authorMousa, Marwan S. Mousacs
dc.contributor.authorSchubert, Richardcs
dc.contributor.authorKočková, Pavlacs
dc.contributor.authorŠkarvada, Pavelcs
dc.coverage.issue10cs
dc.coverage.volume12cs
dc.date.accessioned2025-04-04T11:56:27Z
dc.date.available2025-04-04T11:56:27Z
dc.date.issued2024-10-09cs
dc.description.abstractThis paper presents an analysis of the field ion emission mechanism of tungsten-epoxy nanocomposite emitters and compares their performance with that of tungsten nano-field emitters. The emission mechanism is described using the theory of induced conductive channels. Tungsten emitters with a radius of 70 nm were fabricated using electrochemical polishing and coated with a 20 nm epoxy resin layer. Characterization of the emitters, both before and after coating, was performed using electron microscopy and energy-dispersive X-ray spectroscopy (EDS). The Tungsten nanocomposite emitter was tested using a field ion microscope (FIM) in the voltage range of 0-15 kV. The FIM analyses revealed differences in the emission ion density distributions between the uncoated and coated emitters. The uncoated tungsten tips exhibited the expected crystalline surface atomic distribution in the FIM images, whereas the coated emitters displayed randomly distributed emission spots, indicating the formation of induced conductive channels within the resin layer. The atom probe results are consistent with the FIM findings, suggesting that the formation of conductive channels is more likely to occur in areas where the resin surface is irregular and exhibits protrusions. These findings highlight the distinct emission mechanisms of both emitter types.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationTechnologies - MDPI. 2024, vol. 12, issue 10, p. 1-13.en
dc.identifier.doi10.3390/technologies12100193cs
dc.identifier.issn2227-7080cs
dc.identifier.orcid0000-0002-0008-5265cs
dc.identifier.orcid0000-0003-0752-8214cs
dc.identifier.orcid0000-0002-8059-7761cs
dc.identifier.other197069cs
dc.identifier.researcheridG-1175-2019cs
dc.identifier.researcheridE-6640-2013cs
dc.identifier.scopus57189064262cs
dc.identifier.scopus36544102200cs
dc.identifier.urihttps://hdl.handle.net/11012/250740
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofTechnologies - MDPIcs
dc.relation.urihttps://www.mdpi.com/2227-7080/12/10/193cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2227-7080/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfield ion emissionen
dc.subjecttungsten atomic distributionen
dc.subjectepoxy molecular distributionen
dc.subjectcomposite field emitteren
dc.subjectcomposite electron sourcesen
dc.titleField Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of Epoxy Resinen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197069en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:27en
sync.item.modts2025.04.03 08:32:06en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav fyzikycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
technologies1200193.pdf
Size:
11.02 MB
Format:
Adobe Portable Document Format
Description:
file technologies1200193.pdf