Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces

dc.contributor.authorBerezovski, Vladimircs
dc.contributor.authorCherevko, Yevhencs
dc.contributor.authorHinterleitner, Irenacs
dc.contributor.authorPeška, Patrikcs
dc.coverage.issue9cs
dc.coverage.volume8cs
dc.date.issued2020-09-01cs
dc.description.abstractIn the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMathematics. 2020, vol. 8, issue 9, p. 1-13.en
dc.identifier.doi10.3390/math8091560cs
dc.identifier.issn2227-7390cs
dc.identifier.orcid0000-0002-1046-578Xcs
dc.identifier.other166070cs
dc.identifier.scopus35219039100cs
dc.identifier.urihttp://hdl.handle.net/11012/195701
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMathematicscs
dc.relation.urihttps://www.mdpi.com/2227-7390/8/9/1560cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2227-7390/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectgeodesic mappingen
dc.subjectspace with an affine connectionen
dc.subjectm-symmetric spaceen
dc.subjectm-Ricci-symmetric spaceen
dc.titleGeodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-166070en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:44:45en
sync.item.modts2025.01.17 16:42:48en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics0801560.pdf
Size:
259.77 KB
Format:
Adobe Portable Document Format
Description:
mathematics0801560.pdf