Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces
Loading...
Date
Authors
Berezovski, Vladimir
Cherevko, Yevhen
Hinterleitner, Irena
Peška, Patrik
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
ORCID
Altmetrics
Abstract
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-1046-578X 