Centroid based person detection using pixelwise prediction of the position

Loading...
Thumbnail Image

Authors

Doležel, Petr
Škrabánek, Pavel
Štursa, Dominik
Baruque Zanon, Bruno
Cogollos Adrian, Hector
Krýda, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER
Altmetrics

Abstract

Implementations of person detection in tracking and counting systems tend towards processing of orthogonally captured images on edge computing devices. The ellipse-like shape of heads in orthogonally captured images inspired us to predict head centroids to determine positions of persons in images. We predict the centroids using a fully convolutional network (FCN). We combine the FCN with simple image processing operations to ensure fast inference of the detector. We experiment with the size of the FCN output to further decrease the inference time. We compare the proposed centroid-based detector with bounding box-based detectors on head detection task in terms of the inference time and the detection performance. We propose a performance measure which allows quantitative comparison of the two detection approaches. For the training and evaluation of the detectors, we form original datasets of 8000 annotated images, which are characterized by high variability in terms of lighting conditions, background, image quality, and elevation profile of scenes. We propose an approach which allows simultaneous annotation of the images for both bounding box-based and centroid-based detection. The centroid-based detector shows the best detection performance while keeping edge computing standards.
Implementations of person detection in tracking and counting systems tend towards processing of orthogonally captured images on edge computing devices. The ellipse-like shape of heads in orthogonally captured images inspired us to predict head centroids to determine positions of persons in images. We predict the centroids using a fully convolutional network (FCN). We combine the FCN with simple image processing operations to ensure fast inference of the detector. We experiment with the size of the FCN output to further decrease the inference time. We compare the proposed centroid-based detector with bounding box-based detectors on head detection task in terms of the inference time and the detection performance. We propose a performance measure which allows quantitative comparison of the two detection approaches. For the training and evaluation of the detectors, we form original datasets of 8000 annotated images, which are characterized by high variability in terms of lighting conditions, background, image quality, and elevation profile of scenes. We propose an approach which allows simultaneous annotation of the images for both bounding box-based and centroid-based detection. The centroid-based detector shows the best detection performance while keeping edge computing standards.

Description

Citation

Journal of Computational Science. 2022, vol. 63, issue 1, p. 1-12.
https://www.sciencedirect.com/science/article/pii/S1877750322001442

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO