Some equivalence relationships of regularized regressions

dc.contributor.authorZhang, Y.
dc.contributor.authorThakar, J.
dc.contributor.authorTopham, D.
dc.contributor.authorFalsey, A.
dc.contributor.authorZeng D.
dc.contributor.authorQiu, X.
dc.coverage.issue1cs
dc.coverage.volume7cs
dc.date.accessioned2019-01-02T13:23:43Z
dc.date.available2019-01-02T13:23:43Z
dc.date.issued2018cs
dc.description.abstractRegularization is a powerful framework for solving ill-posed problem and preventing model overfitting in modern regression analysis. It is especially useful for high-dimensional or functional (infinite dimensional) regression models. In this paper, we construct two useful equivalence relationships for regularized regression: 1. An equivalence between regularized functional regression and regularized multi- variate regression. This equivalence provides a computationally efficient way to fit the concurrent functional regression model. 2. An equivalence of penalized multi- variate regression under a group of scaling transformation. This equivalence can be used to solve weighted principal component regression efficiently.en
dc.formattextcs
dc.format.extent3-10cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2018 vol. 7, č. 1, s. 3-10. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2018.01en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/137264
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/7_1/ma_7_1_1_zhang_et_al_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectregularization, elastic-net regression, functional concurrent model, principal com- ponent regression, high-dimensional dataen
dc.titleSome equivalence relationships of regularized regressionsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_7_1_1_zhang_et_al_final.pdf
Size:
776.08 KB
Format:
Adobe Portable Document Format
Description:
Collections