Some equivalence relationships of regularized regressions

Loading...
Thumbnail Image
Date
2018
Authors
Zhang, Y.
Thakar, J.
Topham, D.
Falsey, A.
Zeng D.
Qiu, X.
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Altmetrics
Abstract
Regularization is a powerful framework for solving ill-posed problem and preventing model overfitting in modern regression analysis. It is especially useful for high-dimensional or functional (infinite dimensional) regression models. In this paper, we construct two useful equivalence relationships for regularized regression: 1. An equivalence between regularized functional regression and regularized multi- variate regression. This equivalence provides a computationally efficient way to fit the concurrent functional regression model. 2. An equivalence of penalized multi- variate regression under a group of scaling transformation. This equivalence can be used to solve weighted principal component regression efficiently.
Description
Citation
Mathematics for Applications. 2018 vol. 7, č. 1, s. 3-10. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/7_1/ma_7_1_1_zhang_et_al_final.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Collections
Citace PRO