Parallel Computing Utilization in Nonlinear Model Predictive Control of Permanent Magnet Synchronous Motor

dc.contributor.authorKozubík, Michalcs
dc.contributor.authorVeselý, Liborcs
dc.contributor.authorAufderheide, Eykecs
dc.contributor.authorVáclavek, Pavelcs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.accessioned2025-03-28T16:15:48Z
dc.date.available2025-03-28T16:15:48Z
dc.date.issued2024-09-09cs
dc.description.abstractPermanent Magnet Synchronous Motor (PMSM) drives are widely used for motion control industrial applications and electrical vehicle powertrains, where they provide a good torque-to-weight ratio and a high dynamical performance. With the increasing usage of these machines, the demands on exploiting their abilities are also growing. Usual control techniques, such as field-oriented control (FOC), need some workaround to achieve the requested behavior, e.g., field-weakening, while keeping the constraints on the stator currents. Similarly, when applying the linear model predictive control, the linearization of the torque function and defined constraints lead to a loss of essential information and sub-optimal performance. That is the reason why the application of nonlinear theory is necessary. Nonlinear Model Predictive Control (NMPC) is a promising alternative to linear control methods. However, this approach has a major drawback in its computational demands. This paper presents a novel approach to the implementation of PMSMs' NMPC. The proposed controller utilizes the native parallelism of population-based optimization methods and the supreme performance of field-programmable gate arrays to solve the nonlinear optimization problem in the time necessary for proper motor control. The paper presents the verification of the algorithm's behavior both in simulation and laboratory experiments. The proposed controller's behavior is compared to the standard control technique of FOC and linear MPC. The achieved results prove the superior quality of control performed by NMPC in comparison with FOC and LMPC. The controller was able to follow the Maximal Torque Per Ampere strategy without any supplementary algorithm, altogether with constraint handling.en
dc.formattextcs
dc.format.extent128187-128200cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2024, vol. 12, issue 1, p. 128187-128200.en
dc.identifier.doi10.1109/ACCESS.2024.3456432cs
dc.identifier.issn2169-3536cs
dc.identifier.orcid0000-0002-6887-202Xcs
dc.identifier.orcid0000-0002-7357-4131cs
dc.identifier.orcid0000-0001-8624-5874cs
dc.identifier.other189725cs
dc.identifier.researcheridD-7273-2012cs
dc.identifier.researcheridA-3448-2009cs
dc.identifier.scopus36497445500cs
dc.identifier.scopus8448897700cs
dc.identifier.urihttps://hdl.handle.net/11012/250694
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/10669580cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectTorqueen
dc.subjectParallel processingen
dc.subjectPredictive controlen
dc.subjectOptimizationen
dc.subjectPermanent magnet motorsen
dc.subjectVectorsen
dc.subjectStatorsen
dc.subjectEvolutionary algorithmsen
dc.subjectmotor controlen
dc.subjectnonlinear controlen
dc.subjectparallel computingen
dc.subjectpredictive controlen
dc.titleParallel Computing Utilization in Nonlinear Model Predictive Control of Permanent Magnet Synchronous Motoren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189725en
sync.item.dbtypeVAVen
sync.item.insts2025.03.28 17:15:48en
sync.item.modts2025.03.28 14:32:04en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Parallel_Computing_Utilization_in_Nonlinear_Model_Predictive_Control_of_Permanent_Magnet_Synchronous_Motor.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Description:
file Parallel_Computing_Utilization_in_Nonlinear_Model_Predictive_Control_of_Permanent_Magnet_Synchronous_Motor.pdf