Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case

dc.contributor.authorPetržela, Jiřícs
dc.contributor.authorPolák, Ladislavcs
dc.coverage.issue18cs
dc.coverage.volume112cs
dc.date.issued2024-06-24cs
dc.description.abstractThe objective of this paper is to showcase the capability of the conventional circuit structure known as the Lumpkin oscillator, widely employed in practical applications, to operate in robust chaotic or hyperchaotic steady states. Through numerical analysis, we demonstrate that the generated signals exhibit a significant level of unpredictability and randomness, as evidenced by positive Lyapunov exponents, approximate entropy, recurrence plots, and other indicators of complex dynamics. We establish the structural stability of strange attractors through design and practical construction of a flow-equivalent fourth-order chaotic oscillator, followed by experimental measurements. The oscilloscope screenshots captured align well with the plane projections of the approximate solutions derived from the underlying mathematical models.en
dc.description.abstractThe objective of this paper is to showcase the capability of the conventional circuit structure known as the Lumpkin oscillator, widely employed in practical applications, to operate in robust chaotic or hyperchaotic steady states. Through numerical analysis, we demonstrate that the generated signals exhibit a significant level of unpredictability and randomness, as evidenced by positive Lyapunov exponents, approximate entropy, recurrence plots, and other indicators of complex dynamics. We establish the structural stability of strange attractors through design and practical construction of a flow-equivalent fourth-order chaotic oscillator, followed by experimental measurements. The oscilloscope screenshots captured align well with the plane projections of the approximate solutions derived from the underlying mathematical models.en
dc.formattextcs
dc.format.extent16423-16443cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNONLINEAR DYNAMICS. 2024, vol. 112, issue 18, p. 16423-16443.en
dc.identifier.doi10.1007/s11071-024-09896-ycs
dc.identifier.issn0924-090Xcs
dc.identifier.orcid0000-0001-5286-9574cs
dc.identifier.orcid0000-0001-7084-6210cs
dc.identifier.other189008cs
dc.identifier.researcheridDZG-2188-2022cs
dc.identifier.scopus9333762000cs
dc.identifier.scopus36167253100cs
dc.identifier.urihttp://hdl.handle.net/11012/249482
dc.language.isoencs
dc.publisherSPRINGERcs
dc.relation.ispartofNONLINEAR DYNAMICScs
dc.relation.urihttps://link.springer.com/article/10.1007/s11071-024-09896-ycs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0924-090X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectChaotic circuiten
dc.subjectLyapunov exponentsen
dc.subjectRecurrence ploten
dc.subjectLumpkin oscillatoren
dc.subjectStrange attractoren
dc.subjectChaotic circuit
dc.subjectLyapunov exponents
dc.subjectRecurrence plot
dc.subjectLumpkin oscillator
dc.subjectStrange attractor
dc.titleSinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin caseen
dc.title.alternativeSinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin caseen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189008en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:11:42en
sync.item.modts2025.10.14 09:49:39en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s1107102409896y.pdf
Size:
14.27 MB
Format:
Adobe Portable Document Format
Description:
file s1107102409896y.pdf