High-Temperature Low-Cycle Fatigue Behaviour of MAR-M247 Coated with Newly Developed Thermal and Environmental Barrier Coating

Loading...
Thumbnail Image

Authors

Šulák, Ivo
Obrtlík, Karel
Čelko, Ladislav
Gejdoš, Pavel
Jech, David

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi
Altmetrics

Abstract

This study investigates the strain-controlled low-cycle fatigue (LCF) behaviour of an untreated and surface-treated MAR-M247 superalloy in a symmetrical push-pull cycle with a constant strain rate at 900°C in laboratory air. A newly developed experimental thermal and environmental barrier coating (TEBC) system, consisting of a 170 m thick CoNiCrAlY bond coat (BC) and a bilayer ceramic top coat (TC), with an interlayer and an upper layer, was deposited using air plasma spray techniques. The ceramic interlayer with an average thickness of 77 m was formed from agglomerated and sintered yttria-stabilized zirconia. An experimental mixture of mullite (Al6Si2O13) and hexacelsian (BaAl2Si2O8) at a ratio of 70/30 vol.% was sprayed as the upper layer. The average thickness of the TC was 244 m. The specimen sections were investigated using a TESCAN Lyra3 XMU scanning electron microscope (SEM) to characterise the microstructure of both the TEBC and the substrate material. The fatigue damage mechanisms in the TEBC-coated superalloy were studied. The fatigue life curves in the representation of the total strain amplitude versus the number of cycles to failure of the TEBC-coated and uncoated superalloy were assessed. TEBC was found to have a slight, positive effect on the fatigue life of MAR-M247.
This study investigates the strain-controlled low-cycle fatigue (LCF) behaviour of an untreated and surface-treated MAR-M247 superalloy in a symmetrical push-pull cycle with a constant strain rate at 900°C in laboratory air. A newly developed experimental thermal and environmental barrier coating (TEBC) system, consisting of a 170 m thick CoNiCrAlY bond coat (BC) and a bilayer ceramic top coat (TC), with an interlayer and an upper layer, was deposited using air plasma spray techniques. The ceramic interlayer with an average thickness of 77 m was formed from agglomerated and sintered yttria-stabilized zirconia. An experimental mixture of mullite (Al6Si2O13) and hexacelsian (BaAl2Si2O8) at a ratio of 70/30 vol.% was sprayed as the upper layer. The average thickness of the TC was 244 m. The specimen sections were investigated using a TESCAN Lyra3 XMU scanning electron microscope (SEM) to characterise the microstructure of both the TEBC and the substrate material. The fatigue damage mechanisms in the TEBC-coated superalloy were studied. The fatigue life curves in the representation of the total strain amplitude versus the number of cycles to failure of the TEBC-coated and uncoated superalloy were assessed. TEBC was found to have a slight, positive effect on the fatigue life of MAR-M247.

Description

Citation

Advances in Materials Science and Engineering. 2018, vol. 2018, issue 1, p. 1-8.
https://www.hindawi.com/journals/amse/2018/9014975/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO