Measurement of thermal depolarization effects in piezoelectric coefficients of soft PZT ceramics via the frequency and direct methods

Loading...
Thumbnail Image

Authors

Fialka, Jiří
Beneš, Petr
Michlovská, Lenka
Klusáček, Stanislav
Pikula, Stanislav
Dohnal, Přemysl
Havránek, Zdeněk

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd.
Altmetrics

Abstract

Depolarization at high temperatures around the Curie point constitutes an important yet difficultly measurable material property of piezoelectric (PZT) ceramics. The common vibrometric technique (d33 meters) is not suitable for the measurement of temperature dependences, and therefore we used the frequency method to perform the desired procedures. The indicator selected to show the depolarization state in the piezoelectric ceramics consisted in the piezoelectric charge coefficient, whose value can be effectively measured via the above-mentioned frequency technique. The accuracy of the method was verified via comparing a d33 meter constructed by the authors (as described in this paper) and also by means of differently sized cylinders of ceramics NCE51, which are designed for longitudinal length modes. Based on the obtained results, we established a measurement methodology to exactly determine the value of the Curie point that corresponded to the phase transition to a cubic crystallographic structure. The experiment also confirmed the applicability of progressively controlled depolarization of PZT ceramics by high temperature in the range of between 350 and 370 °C, and it defined the temperature limits at which there occur irreversible changes of the piezoelectric properties of PZT ceramics. In the measured NCE51 material, the limit for irreversible changes was equal to 95% of the Curie temperature (368 °C).
Depolarization at high temperatures around the Curie point constitutes an important yet difficultly measurable material property of piezoelectric (PZT) ceramics. The common vibrometric technique (d33 meters) is not suitable for the measurement of temperature dependences, and therefore we used the frequency method to perform the desired procedures. The indicator selected to show the depolarization state in the piezoelectric ceramics consisted in the piezoelectric charge coefficient, whose value can be effectively measured via the above-mentioned frequency technique. The accuracy of the method was verified via comparing a d33 meter constructed by the authors (as described in this paper) and also by means of differently sized cylinders of ceramics NCE51, which are designed for longitudinal length modes. Based on the obtained results, we established a measurement methodology to exactly determine the value of the Curie point that corresponded to the phase transition to a cubic crystallographic structure. The experiment also confirmed the applicability of progressively controlled depolarization of PZT ceramics by high temperature in the range of between 350 and 370 °C, and it defined the temperature limits at which there occur irreversible changes of the piezoelectric properties of PZT ceramics. In the measured NCE51 material, the limit for irreversible changes was equal to 95% of the Curie temperature (368 °C).

Description

Citation

Journal of the European Ceramic Society. 2016, vol. 36, issue 11, p. 2727-2738.
http://www.sciencedirect.com/science/article/pii/S0955221916301625

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO