Measurement of thermal depolarization effects in piezoelectric coefficients of soft PZT ceramics via the frequency and direct methods
Loading...
Date
Authors
Fialka, Jiří
Beneš, Petr
Michlovská, Lenka
Klusáček, Stanislav
Pikula, Stanislav
Dohnal, Přemysl
Havránek, Zdeněk
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd.
Altmetrics
Abstract
Depolarization at high temperatures around the Curie point constitutes an important yet difficultly measurable material property of piezoelectric (PZT) ceramics. The common vibrometric technique (d33 meters) is not suitable for the measurement of temperature dependences, and therefore we used the frequency method to perform the desired procedures. The indicator selected to show the depolarization state in the piezoelectric ceramics consisted in the piezoelectric charge coefficient, whose value can be effectively measured via the above-mentioned frequency technique. The accuracy of the method was verified via comparing a d33 meter constructed by the authors (as described in this paper) and also by means of differently sized cylinders of ceramics NCE51, which are designed for longitudinal length modes. Based on the obtained results, we established a measurement methodology to exactly determine the value of the Curie point that corresponded to the phase transition to a cubic crystallographic structure. The experiment also confirmed the applicability of progressively controlled depolarization of PZT ceramics by high temperature in the range of between 350 and 370 °C, and it defined the temperature limits at which there occur irreversible changes of the piezoelectric properties of PZT ceramics. In the measured NCE51 material, the limit for irreversible changes was equal to 95% of the Curie temperature (368 °C).
Depolarization at high temperatures around the Curie point constitutes an important yet difficultly measurable material property of piezoelectric (PZT) ceramics. The common vibrometric technique (d33 meters) is not suitable for the measurement of temperature dependences, and therefore we used the frequency method to perform the desired procedures. The indicator selected to show the depolarization state in the piezoelectric ceramics consisted in the piezoelectric charge coefficient, whose value can be effectively measured via the above-mentioned frequency technique. The accuracy of the method was verified via comparing a d33 meter constructed by the authors (as described in this paper) and also by means of differently sized cylinders of ceramics NCE51, which are designed for longitudinal length modes. Based on the obtained results, we established a measurement methodology to exactly determine the value of the Curie point that corresponded to the phase transition to a cubic crystallographic structure. The experiment also confirmed the applicability of progressively controlled depolarization of PZT ceramics by high temperature in the range of between 350 and 370 °C, and it defined the temperature limits at which there occur irreversible changes of the piezoelectric properties of PZT ceramics. In the measured NCE51 material, the limit for irreversible changes was equal to 95% of the Curie temperature (368 °C).
Depolarization at high temperatures around the Curie point constitutes an important yet difficultly measurable material property of piezoelectric (PZT) ceramics. The common vibrometric technique (d33 meters) is not suitable for the measurement of temperature dependences, and therefore we used the frequency method to perform the desired procedures. The indicator selected to show the depolarization state in the piezoelectric ceramics consisted in the piezoelectric charge coefficient, whose value can be effectively measured via the above-mentioned frequency technique. The accuracy of the method was verified via comparing a d33 meter constructed by the authors (as described in this paper) and also by means of differently sized cylinders of ceramics NCE51, which are designed for longitudinal length modes. Based on the obtained results, we established a measurement methodology to exactly determine the value of the Curie point that corresponded to the phase transition to a cubic crystallographic structure. The experiment also confirmed the applicability of progressively controlled depolarization of PZT ceramics by high temperature in the range of between 350 and 370 °C, and it defined the temperature limits at which there occur irreversible changes of the piezoelectric properties of PZT ceramics. In the measured NCE51 material, the limit for irreversible changes was equal to 95% of the Curie temperature (368 °C).
Description
Citation
Journal of the European Ceramic Society. 2016, vol. 36, issue 11, p. 2727-2738.
http://www.sciencedirect.com/science/article/pii/S0955221916301625
http://www.sciencedirect.com/science/article/pii/S0955221916301625
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0001-8541-8155 