Realisations of single-resistance-controlled quadrature oscillators using a generalised current follower transconductance amplifier and a unity-gain voltage-follower

Loading...
Thumbnail Image

Authors

Herencsár, Norbert
Vrba, Kamil
Koton, Jaroslav
Lahiri, Abhirup

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Altmetrics

Abstract

This article presents realisations of single-resistance-controlled-oscillators (SRCOs) using the recently proposed modern active building block (ABB), namely the generalised current follower transconductance amplifier (GCFTA) and unity-gain voltage-follower (UGVF). The SRCO is made using reduced number of components: one GCFTA and one UGVF as the ABBs, two resistors and two grounded capacitors. The circuit offers the advantage of non-interactive control of condition of oscillation and frequency of oscillation and enjoys low active and passive sensitivities. The circuit is also capable of providing two quadrature voltage outputs. PSPICE simulations have been carried out using the bipolar implementation of the circuits. The simulation results validate the theoretical analysis.
This article presents realisations of single-resistance-controlled-oscillators (SRCOs) using the recently proposed modern active building block (ABB), namely the generalised current follower transconductance amplifier (GCFTA) and unity-gain voltage-follower (UGVF). The SRCO is made using reduced number of components: one GCFTA and one UGVF as the ABBs, two resistors and two grounded capacitors. The circuit offers the advantage of non-interactive control of condition of oscillation and frequency of oscillation and enjoys low active and passive sensitivities. The circuit is also capable of providing two quadrature voltage outputs. PSPICE simulations have been carried out using the bipolar implementation of the circuits. The simulation results validate the theoretical analysis.

Description

Citation

INTERNATIONAL JOURNAL OF ELECTRONICS. 2010, vol. 97, issue 8, p. 897-906.
http://www.tandfonline.com/doi/abs/10.1080/00207211003733320

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO