Non-Linear Model Predictive Control of Cabin Temperature and Air Quality in Fully Electric Vehicles

Loading...
Thumbnail Image

Authors

Glos, Jan
Otava, Lukáš
Václavek, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This article describes an application of Non-linear Model Predictive Control algorithms on energy efficient control of fully electric vehicle cabin temperature and air quality. Since fully electric vehicles can not utilize waste heat from a powertrain (or there is not enough waste heat) as ICE vehicles do, it is necessary to employ advanced control approaches (especially for cabin heating) due to the possible mileage lost by using energy from the batteries for cabin conditioning. The basic idea behind this is to avoid the heat losses caused by excessive air exchange and to ensure a satisfactory air quality in combination with a user defined temperature. The Non-linear Model Predictive control algorithms were successfully implemented into an Infineon AURIX Tricore microcontroller and tested within a Processor in the Loop simulation.
This article describes an application of Non-linear Model Predictive Control algorithms on energy efficient control of fully electric vehicle cabin temperature and air quality. Since fully electric vehicles can not utilize waste heat from a powertrain (or there is not enough waste heat) as ICE vehicles do, it is necessary to employ advanced control approaches (especially for cabin heating) due to the possible mileage lost by using energy from the batteries for cabin conditioning. The basic idea behind this is to avoid the heat losses caused by excessive air exchange and to ensure a satisfactory air quality in combination with a user defined temperature. The Non-linear Model Predictive control algorithms were successfully implemented into an Infineon AURIX Tricore microcontroller and tested within a Processor in the Loop simulation.

Description

Citation

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. 2021, vol. 70, issue 2, p. 1216-1229.
https://ieeexplore.ieee.org/document/9335535

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO