The estimated possibilities of process monitoring in milk production by the simple thermodynamic sensors
Loading...
Files
Date
Authors
Adámek, Martin
Adámková, Anna
Řezníček, Michal
Kouřimská, Lenka
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Association HACCP Consultin
Altmetrics
Abstract
The characterization and monitoring of thermal processes in thermodynamic systems can be performed using the thermodynamic sensors (TDS). The basic idea of thermodynamic sensor is possible to use in many various applications (eq. monitoring of frictional heat, thermal radiation, pollution of cleaning fluid, etc.). One of application areas, where the thermodynamic sensor can find the new area for a using, is a production of milk products - cheese, yogurt, kefir, etc. This paper describes the estimated possibilities, advantages and disadvantages of the use of thermodynamic sensors in diary productions and simple experiments for characterization and monitoring of basic operations in milk production process by thermodynamic sensors. The milk products are often realized by fermenting or renneting process. Final stages of fermentation and renneting processes are often determined on the base of sensory evaluation, pH measurement or by analytical method. The exact time of the fermentation process completion is dependent on various parameters and is often the company know-how. The fast, clean and simple non-analytical non-contact method for monitoring and for the determination of process final stages does not exist in this time. Tests of fermentation process, renneting process and yoghurt process by thermodynamic sensors were characterized and measured in this work. Measurement of activity yeasts was tested in first series of experiments. In second series of experiments, measurement of processes in milk production was tested. First results of simple experiments show that the thermodynamic sensors might be used for determination of time behaviour of these processes. Therefore, the milk products (cheese, yogurt, kefir, etc.) is opened as a one of new application areas, where the thermodynamic sensor can be used.
The characterization and monitoring of thermal processes in thermodynamic systems can be performed using the thermodynamic sensors (TDS). The basic idea of thermodynamic sensor is possible to use in many various applications (eq. monitoring of frictional heat, thermal radiation, pollution of cleaning fluid, etc.). One of application areas, where the thermodynamic sensor can find the new area for a using, is a production of milk products - cheese, yogurt, kefir, etc. This paper describes the estimated possibilities, advantages and disadvantages of the use of thermodynamic sensors in diary productions and simple experiments for characterization and monitoring of basic operations in milk production process by thermodynamic sensors. The milk products are often realized by fermenting or renneting process. Final stages of fermentation and renneting processes are often determined on the base of sensory evaluation, pH measurement or by analytical method. The exact time of the fermentation process completion is dependent on various parameters and is often the company know-how. The fast, clean and simple non-analytical non-contact method for monitoring and for the determination of process final stages does not exist in this time. Tests of fermentation process, renneting process and yoghurt process by thermodynamic sensors were characterized and measured in this work. Measurement of activity yeasts was tested in first series of experiments. In second series of experiments, measurement of processes in milk production was tested. First results of simple experiments show that the thermodynamic sensors might be used for determination of time behaviour of these processes. Therefore, the milk products (cheese, yogurt, kefir, etc.) is opened as a one of new application areas, where the thermodynamic sensor can be used.
The characterization and monitoring of thermal processes in thermodynamic systems can be performed using the thermodynamic sensors (TDS). The basic idea of thermodynamic sensor is possible to use in many various applications (eq. monitoring of frictional heat, thermal radiation, pollution of cleaning fluid, etc.). One of application areas, where the thermodynamic sensor can find the new area for a using, is a production of milk products - cheese, yogurt, kefir, etc. This paper describes the estimated possibilities, advantages and disadvantages of the use of thermodynamic sensors in diary productions and simple experiments for characterization and monitoring of basic operations in milk production process by thermodynamic sensors. The milk products are often realized by fermenting or renneting process. Final stages of fermentation and renneting processes are often determined on the base of sensory evaluation, pH measurement or by analytical method. The exact time of the fermentation process completion is dependent on various parameters and is often the company know-how. The fast, clean and simple non-analytical non-contact method for monitoring and for the determination of process final stages does not exist in this time. Tests of fermentation process, renneting process and yoghurt process by thermodynamic sensors were characterized and measured in this work. Measurement of activity yeasts was tested in first series of experiments. In second series of experiments, measurement of processes in milk production was tested. First results of simple experiments show that the thermodynamic sensors might be used for determination of time behaviour of these processes. Therefore, the milk products (cheese, yogurt, kefir, etc.) is opened as a one of new application areas, where the thermodynamic sensor can be used.
Description
Keywords
Citation
Potravinarstvo Slovak Journal of Food Sciences. 2016, vol. 9, issue 1, p. 643-648.
http://www.potravinarstvo.com/journal1/index.php/potravinarstvo/article/view/462
http://www.potravinarstvo.com/journal1/index.php/potravinarstvo/article/view/462
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
DOI
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported

0000-0002-8668-863X 