In-Bed Posture Classification Based on Sparse Representation in Redundant Dictionaries

dc.contributor.authorMihálik, Ondrejcs
dc.contributor.authorSýkora, Tomášcs
dc.contributor.authorHusák, Michalcs
dc.contributor.authorFiedler, Petrcs
dc.coverage.issue4cs
dc.coverage.volume55cs
dc.date.issued2022-05-20cs
dc.description.abstractNon-orthogonal signal representation using redundant dictionaries gradually gained popularity over the last decades. Sparse methods find major application in signal denoising, audio declipping, time-frequency analysis, and classification, to name a few. This paper is inspired by the exceptional results of sparse representation classification originally suggested for face recognition. We compare the method to other common classifiers using simulated as well as real datasets. In the latter the proposed method is tested with real pressure data from a bed equipped with a matrix of 30×11 pressure sensors. Here the method outperforms standard classification methods (surpassing 91 % accuracy) without need of parameter selection or special user’s skills. Furthermore it offers a means of dealing with occlusions, whose results are presented as well.en
dc.formattextcs
dc.format.extent374-379cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIFAC-PapersOnLine (ELSEVIER). 2022, vol. 55, issue 4, p. 374-379.en
dc.identifier.doi10.1016/j.ifacol.2022.06.062cs
dc.identifier.issn2405-8963cs
dc.identifier.orcid0000-0001-7433-9275cs
dc.identifier.orcid0000-0003-4151-6284cs
dc.identifier.orcid0000-0002-8743-6776cs
dc.identifier.orcid0000-0001-8558-5164cs
dc.identifier.other177806cs
dc.identifier.researcheridD-7622-2012cs
dc.identifier.scopus8441662100cs
dc.identifier.urihttp://hdl.handle.net/11012/208166
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofIFAC-PapersOnLine (ELSEVIER)cs
dc.relation.urihttps://doi.org/10.1016/j.ifacol.2022.06.062cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2405-8963/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectsparse representationen
dc.subjectredundant dictionaryen
dc.subjectSRCen
dc.subjectposture classificationen
dc.subjectdenoisingen
dc.titleIn-Bed Posture Classification Based on Sparse Representation in Redundant Dictionariesen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-177806en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:39:31en
sync.item.modts2025.01.17 16:46:01en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mihalik_PDeS_2022_accepted.pdf
Size:
498.2 KB
Format:
Adobe Portable Document Format
Description:
Mihalik_PDeS_2022_accepted.pdf