The effect of surface roughness and wettability on the adhesion and proliferation of Saos-2 cells seeded on 3D printed poly(3-hydroxybutyrate)/polylactide (PHB/PLA) surfaces

Loading...
Thumbnail Image

Authors

Odehnalová, Veronika
Krobot, Štěpán
Šindelář, Jan
Šebová, Eva
Klusáček Rampichová, Michala
Přikryl, Radek

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The aim of this work is to explore the effect of surface characteristics of the 3D printed scaffolds on their suitability for Saos-2 cells growth. Two promising materials for bone tissue engineering were examined, both containing poly(3-hydroxybutyrate)/poly(d,l-lactide) plasticized blend and one of them filled with bioactive tricalcium phosphate. The surface free energy (SFE) of samples was determined by contact angle measurement with four liquids. For non-filled sample the water contact angle (WCA) was 74° and its SFE was 40 mNm1. The composite sample exhibited substantially decreased WCA, 61°. Moreover, the addition of the tricalcium phosphate caused doubling of the polar component of the SFE which increased by a total of 13%. 3D printed surfaces prepared by fused deposition modeling method showed a profound increase of WCA due to the increase in their surface roughness which was analyzed by confocal microscopy. The change in wetting properties strongly affected the behavior of Saos-2 cells on printed surfaces. The number of cells as measured by DNA quantification linearly decreased with increasing surface WCA. The highest number of cells was observed on the pressed samples and 3D printed surfaces made of simple lines and a grid with 50 m gap between lines. The favored surfaces exhibit WCA under 80° which is important information for the future design of the scaffolds.
The aim of this work is to explore the effect of surface characteristics of the 3D printed scaffolds on their suitability for Saos-2 cells growth. Two promising materials for bone tissue engineering were examined, both containing poly(3-hydroxybutyrate)/poly(d,l-lactide) plasticized blend and one of them filled with bioactive tricalcium phosphate. The surface free energy (SFE) of samples was determined by contact angle measurement with four liquids. For non-filled sample the water contact angle (WCA) was 74° and its SFE was 40 mNm1. The composite sample exhibited substantially decreased WCA, 61°. Moreover, the addition of the tricalcium phosphate caused doubling of the polar component of the SFE which increased by a total of 13%. 3D printed surfaces prepared by fused deposition modeling method showed a profound increase of WCA due to the increase in their surface roughness which was analyzed by confocal microscopy. The change in wetting properties strongly affected the behavior of Saos-2 cells on printed surfaces. The number of cells as measured by DNA quantification linearly decreased with increasing surface WCA. The highest number of cells was observed on the pressed samples and 3D printed surfaces made of simple lines and a grid with 50 m gap between lines. The favored surfaces exhibit WCA under 80° which is important information for the future design of the scaffolds.

Description

Citation

Results in Surfaces and Interfaces. 2024, vol. 16, issue August, p. 1-18.
https://www.sciencedirect.com/science/article/pii/S2666845924000916?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO