Synergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessment
| dc.contributor.author | Gavenčiak, Michal | cs |
| dc.contributor.author | Mucha, Ján | cs |
| dc.contributor.author | Mekyska, Jiří | cs |
| dc.contributor.author | Faúndez Zanuy, Marcos | cs |
| dc.contributor.author | Ferrer-Ramos, Pau | cs |
| dc.date.issued | 2025-11-03 | cs |
| dc.description.abstract | Traditional handwriting analysis for neurological assessment captures motor output but largely misses the guiding cognitive processes like visuospatial planning and attention. This study introduces a multimodal approach, combining online handwriting kinematics with concurrent eye-tracking data from 48 older adults performing the Pentagon Copy Test (PCT). We extracted novel feature sets, including Hand-Eye Coupling (HEC) and Fractional Derivative (FD) biomarkers, and used an XGBoost classifier with Recursive Feature Elimination (RFE) to predict a binarized PCT performance score. Our final model, integrating all features, achieved a Balanced Accuracy (BACC) of 90%, significantly outperforming a model trained on baseline features alone (79% BACC). The findings demonstrate that integrating eye-tracking data with advanced handwriting analysis provides a powerful and holistic tool for objectively assessing cognitive-motor performance, highlighting its potential as a sensitive digital biomarker. | en |
| dc.description.abstract | Traditional handwriting analysis for neurological assessment captures motor output but largely misses the guiding cognitive processes like visuospatial planning and attention. This study introduces a multimodal approach, combining online handwriting kinematics with concurrent eye-tracking data from 48 older adults performing the Pentagon Copy Test (PCT). We extracted novel feature sets, including Hand-Eye Coupling (HEC) and Fractional Derivative (FD) biomarkers, and used an XGBoost classifier with Recursive Feature Elimination (RFE) to predict a binarized PCT performance score. Our final model, integrating all features, achieved a Balanced Accuracy (BACC) of 90%, significantly outperforming a model trained on baseline features alone (79% BACC). The findings demonstrate that integrating eye-tracking data with advanced handwriting analysis provides a powerful and holistic tool for objectively assessing cognitive-motor performance, highlighting its potential as a sensitive digital biomarker. | en |
| dc.format | text | cs |
| dc.format.extent | 278-283 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | 2025 17th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). 2025, p. 278-283. | en |
| dc.identifier.doi | 10.1109/ICUMT67815.2025.11268615 | cs |
| dc.identifier.isbn | 979-8-3315-7675-2 | cs |
| dc.identifier.orcid | 0000-0001-8835-1056 | cs |
| dc.identifier.orcid | 0000-0001-5126-440X | cs |
| dc.identifier.orcid | 0000-0002-6195-193X | cs |
| dc.identifier.other | 199887 | cs |
| dc.identifier.researcherid | T-9091-2019 | cs |
| dc.identifier.researcherid | K-4001-2015 | cs |
| dc.identifier.scopus | 57201029686 | cs |
| dc.identifier.scopus | 35746344400 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/255775 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartof | 2025 17th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) | cs |
| dc.relation.uri | https://ieeexplore.ieee.org/document/11268615 | cs |
| dc.rights | (C) IEEE | cs |
| dc.rights.access | openAccess | cs |
| dc.subject | Digital Biomarkers | en |
| dc.subject | Eyetracking | en |
| dc.subject | Fractional Calculus | en |
| dc.subject | Handwriting | en |
| dc.subject | Pentagon Copy Test | en |
| dc.subject | Digital Biomarkers | |
| dc.subject | Eyetracking | |
| dc.subject | Fractional Calculus | |
| dc.subject | Handwriting | |
| dc.subject | Pentagon Copy Test | |
| dc.title | Synergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessment | en |
| dc.title.alternative | Synergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessment | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | acceptedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/GA0/GN/GN23-06074O | cs |
| sync.item.dbid | VAV-199887 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.01.06 14:53:29 | en |
| sync.item.modts | 2026.01.06 14:32:30 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ICUMT67815.2025.11268615_accepted.pdf
- Size:
- 1.61 MB
- Format:
- Adobe Portable Document Format
- Description:
- file ICUMT67815.2025.11268615_accepted.pdf
