Synergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessment

dc.contributor.authorGavenčiak, Michalcs
dc.contributor.authorMucha, Jáncs
dc.contributor.authorMekyska, Jiřícs
dc.contributor.authorFaúndez Zanuy, Marcoscs
dc.contributor.authorFerrer-Ramos, Paucs
dc.date.issued2025-11-03cs
dc.description.abstractTraditional handwriting analysis for neurological assessment captures motor output but largely misses the guiding cognitive processes like visuospatial planning and attention. This study introduces a multimodal approach, combining online handwriting kinematics with concurrent eye-tracking data from 48 older adults performing the Pentagon Copy Test (PCT). We extracted novel feature sets, including Hand-Eye Coupling (HEC) and Fractional Derivative (FD) biomarkers, and used an XGBoost classifier with Recursive Feature Elimination (RFE) to predict a binarized PCT performance score. Our final model, integrating all features, achieved a Balanced Accuracy (BACC) of 90%, significantly outperforming a model trained on baseline features alone (79% BACC). The findings demonstrate that integrating eye-tracking data with advanced handwriting analysis provides a powerful and holistic tool for objectively assessing cognitive-motor performance, highlighting its potential as a sensitive digital biomarker.en
dc.description.abstractTraditional handwriting analysis for neurological assessment captures motor output but largely misses the guiding cognitive processes like visuospatial planning and attention. This study introduces a multimodal approach, combining online handwriting kinematics with concurrent eye-tracking data from 48 older adults performing the Pentagon Copy Test (PCT). We extracted novel feature sets, including Hand-Eye Coupling (HEC) and Fractional Derivative (FD) biomarkers, and used an XGBoost classifier with Recursive Feature Elimination (RFE) to predict a binarized PCT performance score. Our final model, integrating all features, achieved a Balanced Accuracy (BACC) of 90%, significantly outperforming a model trained on baseline features alone (79% BACC). The findings demonstrate that integrating eye-tracking data with advanced handwriting analysis provides a powerful and holistic tool for objectively assessing cognitive-motor performance, highlighting its potential as a sensitive digital biomarker.en
dc.formattextcs
dc.format.extent278-283cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citation2025 17th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). 2025, p. 278-283.en
dc.identifier.doi10.1109/ICUMT67815.2025.11268615cs
dc.identifier.isbn979-8-3315-7675-2cs
dc.identifier.orcid0000-0001-8835-1056cs
dc.identifier.orcid0000-0001-5126-440Xcs
dc.identifier.orcid0000-0002-6195-193Xcs
dc.identifier.other199887cs
dc.identifier.researcheridT-9091-2019cs
dc.identifier.researcheridK-4001-2015cs
dc.identifier.scopus57201029686cs
dc.identifier.scopus35746344400cs
dc.identifier.urihttp://hdl.handle.net/11012/255775
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartof2025 17th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)cs
dc.relation.urihttps://ieeexplore.ieee.org/document/11268615cs
dc.rights(C) IEEEcs
dc.rights.accessopenAccesscs
dc.subjectDigital Biomarkersen
dc.subjectEyetrackingen
dc.subjectFractional Calculusen
dc.subjectHandwritingen
dc.subjectPentagon Copy Testen
dc.subjectDigital Biomarkers
dc.subjectEyetracking
dc.subjectFractional Calculus
dc.subjectHandwriting
dc.subjectPentagon Copy Test
dc.titleSynergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessmenten
dc.title.alternativeSynergy of Eye and Hand: Multimodal Biomarkers for Cognitive Assessmenten
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GN/GN23-06074Ocs
sync.item.dbidVAV-199887en
sync.item.dbtypeVAVen
sync.item.insts2026.01.06 14:53:29en
sync.item.modts2026.01.06 14:32:30en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICUMT67815.2025.11268615_accepted.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
file ICUMT67815.2025.11268615_accepted.pdf