On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators.
| dc.contributor.author | Chvalina, Jan | cs |
| dc.contributor.author | Mayerová, Šárka | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 22 | cs |
| dc.date.issued | 2014-07-01 | cs |
| dc.description.abstract | The contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called Ends-Lemma applied on ordered groups of differential operators. Moreover, there is also obtained a regularly preordered transposition hypergroup of considered partial differential operators. | en |
| dc.description.abstract | The contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called Ends-Lemma applied on ordered groups of differential operators. Moreover, there is also obtained a regularly preordered transposition hypergroup of considered partial differential operators. | en |
| dc.format | text | cs |
| dc.format.extent | 85;-103 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica. 2014, vol. 22, issue 1, p. 85;-103. | en |
| dc.identifier.doi | 10.2478/auom-2014-0008 | cs |
| dc.identifier.issn | 1224-1784 | cs |
| dc.identifier.orcid | 0000-0003-2852-0940 | cs |
| dc.identifier.other | 111426 | cs |
| dc.identifier.researcherid | D-9419-2018 | cs |
| dc.identifier.scopus | 17340083500 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/201756 | |
| dc.language.iso | en | cs |
| dc.publisher | Ovidius University of Constana | cs |
| dc.relation.ispartof | Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica | cs |
| dc.relation.uri | https://www.sciendo.com/article/10.2478/auom-2014-0008 | cs |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1224-1784/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
| dc.subject | Action of a hyperstructure on a set | en |
| dc.subject | semihypergroup | en |
| dc.subject | hypergroup | en |
| dc.subject | proximity space | en |
| dc.subject | transformationm hypergroup | en |
| dc.subject | tolerance on a join space | en |
| dc.subject | regularly preordered hypergroup | en |
| dc.subject | ordered semigroup and group | en |
| dc.subject | partial differential operator. | en |
| dc.subject | Action of a hyperstructure on a set | |
| dc.subject | semihypergroup | |
| dc.subject | hypergroup | |
| dc.subject | proximity space | |
| dc.subject | transformationm hypergroup | |
| dc.subject | tolerance on a join space | |
| dc.subject | regularly preordered hypergroup | |
| dc.subject | ordered semigroup and group | |
| dc.subject | partial differential operator. | |
| dc.title | On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators. | en |
| dc.title.alternative | On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators. | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-111426 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:10:15 | en |
| sync.item.modts | 2025.10.14 09:32:29 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.2478_auom20140008.pdf
- Size:
- 769.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- 10.2478_auom20140008.pdf
