Evoluční model s učením (LEM) pro optimalizační úlohy

Loading...
Thumbnail Image

Date

Authors

Grunt, Pavel

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá evolučním modelem s učením, relativně novou evoluční optimalizační metodou používající klasifikační algoritmy. Její optimalizační průběh je řízen dle charakteristiky rozdílu skupiny nejlepších od skupiny nejhorších řešení v populaci. Práce blíže představuje nové verze metody s klasifikačními algoritmy AdaBoost, SVM a také způsob využívání většího počtu skupin řešení.  Kvality metod byly ověřovány na řadě experimentů ve statickém i dynamickém prostředí. Výsledky experimentů ukázaly, že metoda dosahuje nejlepších hodnot při menších velikostech skupin. Při srovnání s EDA (Estimation of Distribution Algorithm) optimalizačním algoritmem varianty evolučního modelu s učením dosahovaly srovnatelných a lepších výsledků rychleji. Celkově nejlépe si vedla varianta kombinující klasifikátory AdaBoost a SVM.
My thesis is dealing with the Learnable Evolution Model (LEM), a new evolutionary method of optimization, which employs a classification algorithm. The optimization process is guided by a characteristics of differences between groups of high and low performance solutions in the population. In this thesis I introduce new variants of LEM using classification algorithm AdaBoost or SVM. The qualities of proposed LEM variants were validated in a series of experiments in static and dynamic enviroment. The results have shown that the metod has better results with smaller group sizes. When compared to the Estimation of Distribution Algorithm, the LEM variants achieve comparable or better values faster. However, the LEM variant which combined the AdaBoost approach with the SVM approach had the best overall performance.

Description

Citation

GRUNT, P. Evoluční model s učením (LEM) pro optimalizační úlohy [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2014.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Inteligentní systémy

Comittee

doc. Ing. František Zbořil, CSc. (předseda) doc. Ing. Vladimír Janoušek, Ph.D. (místopředseda) doc. Dr. Ing. Dušan Kolář (člen) prof. Ing. Radomil Matoušek, Ph.D. (člen) Mgr. Ing. Pavel Očenášek, Ph.D. (člen) Dr. Ing. Petr Peringer (člen)

Date of acceptance

2014-06-20

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm "B". Otázky u obhajoby: Můžete uvést, jak si stojí navržený přístup (LEM s AdaBoost a LEM s SVM) na zmíněných testovacích problémech v porovnání s variantami LEM publikovanými v literatuře? Jak bylo ověřeno, že vaše vlastní implementace klasifikačních algoritmů je v souladu s jejich definicí?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO