Evoluční model s učením (LEM) pro optimalizační úlohy
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Tato práce se zabývá evolučním modelem s učením, relativně novou evoluční optimalizační metodou používající klasifikační algoritmy. Její optimalizační průběh je řízen dle charakteristiky rozdílu skupiny nejlepších od skupiny nejhorších řešení v populaci. Práce blíže představuje nové verze metody s klasifikačními algoritmy AdaBoost, SVM a také způsob využívání většího počtu skupin řešení. Kvality metod byly ověřovány na řadě experimentů ve statickém i dynamickém prostředí. Výsledky experimentů ukázaly, že metoda dosahuje nejlepších hodnot při menších velikostech skupin. Při srovnání s EDA (Estimation of Distribution Algorithm) optimalizačním algoritmem varianty evolučního modelu s učením dosahovaly srovnatelných a lepších výsledků rychleji. Celkově nejlépe si vedla varianta kombinující klasifikátory AdaBoost a SVM.
My thesis is dealing with the Learnable Evolution Model (LEM), a new evolutionary method of optimization, which employs a classification algorithm. The optimization process is guided by a characteristics of differences between groups of high and low performance solutions in the population. In this thesis I introduce new variants of LEM using classification algorithm AdaBoost or SVM. The qualities of proposed LEM variants were validated in a series of experiments in static and dynamic enviroment. The results have shown that the metod has better results with smaller group sizes. When compared to the Estimation of Distribution Algorithm, the LEM variants achieve comparable or better values faster. However, the LEM variant which combined the AdaBoost approach with the SVM approach had the best overall performance.
My thesis is dealing with the Learnable Evolution Model (LEM), a new evolutionary method of optimization, which employs a classification algorithm. The optimization process is guided by a characteristics of differences between groups of high and low performance solutions in the population. In this thesis I introduce new variants of LEM using classification algorithm AdaBoost or SVM. The qualities of proposed LEM variants were validated in a series of experiments in static and dynamic enviroment. The results have shown that the metod has better results with smaller group sizes. When compared to the Estimation of Distribution Algorithm, the LEM variants achieve comparable or better values faster. However, the LEM variant which combined the AdaBoost approach with the SVM approach had the best overall performance.
Description
Citation
GRUNT, P. Evoluční model s učením (LEM) pro optimalizační úlohy [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2014.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Inteligentní systémy
Comittee
doc. Ing. František Zbořil, CSc. (předseda)
doc. Ing. Vladimír Janoušek, Ph.D. (místopředseda)
doc. Dr. Ing. Dušan Kolář (člen)
doc. Ing. Radomil Matoušek, Ph.D. (člen)
Mgr. Ing. Pavel Očenášek, Ph.D. (člen)
Dr. Ing. Petr Peringer (člen)
Date of acceptance
2014-06-20
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm "B". Otázky u obhajoby: Můžete uvést, jak si stojí navržený přístup (LEM s AdaBoost a LEM s SVM) na zmíněných testovacích problémech v porovnání s variantami LEM publikovanými v literatuře? Jak bylo ověřeno, že vaše vlastní implementace klasifikačních algoritmů je v souladu s jejich definicí?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení