Hluboké neuronové sítě pro analýzu medicínských obrazových dat

Loading...
Thumbnail Image

Date

Authors

Dronzeková, Michaela

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cieľom tejto práce je využitie konvolučných neurónových sietí na klasifikáciu röntgenových snímok ľudského tela. Na tento účel boli vytvorené štyri neurónové siete, ktoré sa testujú na troch klasifikačných úlohách: klasifikácia bočnej a predozadnej snímky hrudníka, klasifikácia snímok do viacerých kategórií a klasifikácia chorôb na predozadnej snímke hrudníka. Najlepšie výsledky dosiahli siete ResNet a SEResNet. Pri prvej úlohe dosiahla SEResNet presnosť 99,49%, pri druhej mala najlepšie výsledky ResNet s presnosťou 94,97% a v prípade tretej úlohy dosiahla najlepší výsledok opäť SEResNet, 31,53% s použitím metriky F1 measure.
The purpose of this thesis is to use convolutional neural networks for X-ray image classification of human body. Four different architectures of neural networks have been created. They were trained and tested on three tasks: classification of front and lateral chest, classification of X-ray images into several different categories and classification of diseases in chest X-ray. ResNet and SEResNet architectures achieved the best results. SEResNet scored 99,49% accuracy in the first task, ResNet achieved 94,97% accuracy in the second task and SEResNet reached 31,53% in the third task with F1 measure as metrics for evaluating results.

Description

Citation

DRONZEKOVÁ, M. Hluboké neuronové sítě pro analýzu medicínských obrazových dat [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2018.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Ing. Adam Herout, Ph.D. (předseda) doc. Ing. Ondřej Ryšavý, Ph.D. (místopředseda) Ing. Bohuslav Křena, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. RNDr. Michal Novák, Ph.D. (člen)

Date of acceptance

2018-06-13

Defence

Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázku oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm výborně (A) . Otázky u obhajoby: Bylo by možné využít pouze uměle generovaná RTG data k natrénování robustního modelu schopného klasifikace i na reálných datech?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO