Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds

dc.contributor.authorPermyakova, Elizavetacs
dc.contributor.authorKiryukhantsev-Korneev, Philipcs
dc.contributor.authorGudz, Kristina Yu.cs
dc.contributor.authorKonopatsky, Anton S.cs
dc.contributor.authorPolčák, Josefcs
dc.contributor.authorZhitnyak, I.Y.cs
dc.contributor.authorGloushankova, Natalia A.cs
dc.contributor.authorShtansky, Dmitry V.cs
dc.contributor.authorManakhov, Antoncs
dc.coverage.issue12cs
dc.coverage.volume9cs
dc.date.accessioned2020-08-04T11:04:42Z
dc.date.available2020-08-04T11:04:42Z
dc.date.issued2019-12-01cs
dc.description.abstractDue to their good mechanical stability compared to gelatin, collagen or polyethylene glycol nanofibers and slow degradation rate, biodegradable poly-epsilon-caprolactone (PCL) nanofibers are promising material as scaffolds for bone and soft-tissue engineering. Here, PCL nanofibers were prepared by the electrospinning method and then subjected to surface functionalization aimed at improving their biocompatibility and bioactivity. For surface modification, two approaches were used: (i) COOH-containing polymer was deposited on the PCL surface using atmospheric pressure plasma copolymerization of CO2 and C2H4, and (ii) PCL nanofibers were coated with multifunctional bioactive nanostructured TiCaPCON film by magnetron sputtering of TiC-CaO-Ti3POx target. To evaluate bone regeneration ability in vitro, the surface-modified PCL nanofibers were immersed in simulated body fluid (SBF, 1x) for 21 days. The results obtained indicate different osteoblastic and epithelial cell response depending on the modification method. The TiCaPCON-coated PCL nanofibers exhibited enhanced adhesion and proliferation of MC3T3-E1 cells, promoted the formation of Ca-based mineralized layer in SBF and, therefore, can be considered as promising material for bone tissue regeneration. The PCL-COOH nanofibers demonstrated improved adhesion and proliferation of IAR-2 cells, which shows their high potential for skin reparation and wound dressing.en
dc.formattextcs
dc.format.extent1-16cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNanomaterials. 2019, vol. 9, issue 12, p. 1-16.en
dc.identifier.doi10.3390/nano9121769cs
dc.identifier.issn2079-4991cs
dc.identifier.other163624cs
dc.identifier.urihttp://hdl.handle.net/11012/189002
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofNanomaterialscs
dc.relation.urihttps://www.mdpi.com/2079-4991/9/12/1769cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2079-4991/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecttissue engineeringen
dc.subjectpolycaprolactone nanofibersen
dc.subjectplasma modificationen
dc.subjectmineralizationen
dc.subjectXPSen
dc.titleComparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffoldsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-163624en
sync.item.dbtypeVAVen
sync.item.insts2022.03.29 16:57:03en
sync.item.modts2022.03.29 16:15:44en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nanomaterials0901769.pdf
Size:
4.56 MB
Format:
Adobe Portable Document Format
Description:
nanomaterials0901769.pdf