The periodic problem for the second order integro-differential equations with distributed deviation

dc.contributor.authorMukhigulashvili, Sulkhancs
dc.contributor.authorNovotná, Veronikacs
dc.coverage.issue2cs
dc.coverage.volume146cs
dc.date.issued2021-06-05cs
dc.description.abstractIn the paper we describe the classes of unique solvability of the Dirichlet and mixed two point boundary value problems for the second order linear integro-differential equation b u (t) = p0 (t)u(t) + p1 (t)u(1 (t)) + p(t, s)u( (s)) ds + q(t). a On the basis of the obtained and, in some sense, optimal results for the linear problems, by the a priori boundedness principle we prove the theorems of solvability and unique solvability for the second order nonlinear functional differential equations under the mentioned boundary conditions.en
dc.formattextcs
dc.format.extent167-183cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMathematica Bohemica. 2021, vol. 146, issue 2, p. 167-183.en
dc.identifier.doi10.21136/MB.2020.0061-19cs
dc.identifier.issn0862-7959cs
dc.identifier.orcid0000-0001-6321-4549cs
dc.identifier.orcid0000-0001-9360-3035cs
dc.identifier.other159528cs
dc.identifier.scopus55546358800cs
dc.identifier.urihttp://hdl.handle.net/11012/193386
dc.language.isoencs
dc.publisherInstitute of Mathematics CAScs
dc.relation.ispartofMathematica Bohemicacs
dc.relation.urihttps://articles.math.cas.cz/10.21136/MB.2020.0061-19cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0862-7959/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectIntegro-differential equationsen
dc.subjectDirichlet and mixed problemsen
dc.subjectunique solvabilityen
dc.subjecta priori boundedness principleen
dc.titleThe periodic problem for the second order integro-differential equations with distributed deviationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-159528en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:43:26en
sync.item.modts2025.01.17 15:21:14en
thesis.grantorVysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MB.2020.006119.pdf
Size:
200.32 KB
Format:
Adobe Portable Document Format
Description:
MB.2020.006119.pdf