A Novel IoT Intrusion Detection Model Using 2dCNN-BiLSTM

Loading...
Thumbnail Image

Authors

Xiang, R. H.
Li, S. S.
Pan, J. L.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

With the continuous advancement of Internet of Things (IoT) intelligence, IoT security issues have become more and more prominent in recent years. The research on IoT security has become a hot spot. A lightweight IoT intrusion detection model fusing a convolutional neural network, bidirectional long short-term memory network is proposed. It aims to improve processed data security and attack detection accuracy. First, sampling is performed by a hybrid sampling algorithm fusing SMOTE and ENN. Its aim is to minimize the impact of imbalanced-data and ensure data quantity in the process. Then, the data features are extracted by 2-dimensional convolutional neural network (2dCNN), and the effect of useless information is reduced by mean pooling and maximum pooling, so it can be adapted to the demanding resource environment of the IoT. On this basis, long-range dependent temporal features are extracted using bidirectional long short-term memory (BiLSTM), which aims to fully extract data features to improve detection accuracy in the limited resource environment. Finally, the algorithm is validated on the UNSW_NB15 dataset, and the results of the experiments reaches 93.5% at Accuracy, 86.4% at Precision, 85.3% at Recall and 85.8% at F1-Score. According to the results, the proposed algorithm can generate higher-quality samples, achieve higher detection rate with faster inference time and spend lower memory costs.

Description

Citation

Radioengineering. 2024 vol. 33, č. 2, s. 236-245. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2024/24_02_0236_0245.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO