New Methodology Of Parkinsonic Dysgraphia Analysis By Online Handwriting Using Fractional Derivatives
but.event.date | 26.04.2018 | cs |
but.event.title | Student EEICT 2018 | cs |
dc.contributor.author | Mucha, Ján | |
dc.date.accessioned | 2019-03-04T10:05:53Z | |
dc.date.available | 2019-03-04T10:05:53Z | |
dc.date.issued | 2018 | cs |
dc.description.abstract | Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder. One typical hallmark of PD is disruption in execution of practised skills such as handwriting. This paper introduces a new methodology of kinematic features calculation based on fractional derivatives applied on PD handwriting. Discrimination power of basic kinematic features (velocity, acceleration, jerk) was evaluated by classification analysis (using support vector machines and random forests). For this purpose, 37 PD patients and 38 healthy controls were enrolled. In comparison to results reported in other works, we proved that FDE in online handwriting analysis brings promising improvements. The best result of multivariate analysis was achieved with 83:89% classification accuracy in combination with 5 features using only one handwriting task (overlapped circles). This study reveals an impact of fractional derivatives based features in analysis of Parkinsonic dysgraphia. | en |
dc.format | text | cs |
dc.format.extent | 398-402 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 24th Conference STUDENT EEICT 2018. s. 398-402. ISBN 978-80-214-5614-3 | cs |
dc.identifier.isbn | 978-80-214-5614-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/138264 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 24th Conference STUDENT EEICT 2018 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Binary classification | en |
dc.subject | fractal calculus | en |
dc.subject | fractional derivative | en |
dc.subject | online handwriting | en |
dc.subject | overlapped circles | en |
dc.subject | Parkinson’s disease | en |
dc.title | New Methodology Of Parkinsonic Dysgraphia Analysis By Online Handwriting Using Fractional Derivatives | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eeict2018-398.pdf
- Size:
- 511.61 KB
- Format:
- Adobe Portable Document Format
- Description: