Parkinson’s Disease Recognition based on Sleep Metrics from Actigraphy and Sleep Diaries

but.event.date26.04.2022cs
but.event.titleSTUDENT EEICT 2022cs
dc.contributor.authorMikulec, Marek
dc.contributor.authorMekyska, Jiří
dc.contributor.authorGaláž, Zoltán
dc.date.accessioned2022-12-06T13:22:00Z
dc.date.available2022-12-06T13:22:00Z
dc.date.issued2022cs
dc.description.abstractParkinson’s disease is accompanied by sleep disorders in most cases. Therefore patients with Parkinson’s disease could be identified according to proper sleep metrics. The study aims to train a classifier and identify proper sleep metrics, that could distinguish patients with Parkinson’s disease from subjects in control group based on data from actigraphy and sleep diaries. Study sample consisted of 23 patients with probable Parkinson’s disease and 71 control subjects resulting in 654 nights of actigraphy and sleep diary data, with 26 unique features per night. XGBoost classifier was trained to distinguish the groups, scoring 80% accuracy and 52% F1 on test data. Actigraphy based parameters targeted on wake analysis during sleep were marked as most important. The study provided classifier and obtained the most important parameters to identify patients with Parkinson’s disease based on actigraphy and sleep diary data.en
dc.formattextcs
dc.format.extent281-285cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 281-285. ISBN 978-80-214-6030-0cs
dc.identifier.doi10.13164/eeict.2022.281
dc.identifier.isbn978-80-214-6030-0
dc.identifier.urihttp://hdl.handle.net/11012/208652
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 28st Conference STUDENT EEICT 2022: Selected papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectactigraphy, machine learning, Parkinson’s disease, SHAP values, sleep diaries, sleep disorders, XGBoosten
dc.titleParkinson’s Disease Recognition based on Sleep Metrics from Actigraphy and Sleep Diariesen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
281_eeict_2022.pdf
Size:
2.79 MB
Format:
Adobe Portable Document Format
Description: