Parkinson’s Disease Recognition based on Sleep Metrics from Actigraphy and Sleep Diaries
Loading...
Date
2022
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Parkinson’s disease is accompanied by sleep disorders in most cases. Therefore patients with Parkinson’s disease could be identified according to proper sleep metrics. The study aims to train a classifier and identify proper sleep metrics, that could distinguish patients with Parkinson’s disease from subjects in control group based on data from actigraphy and sleep diaries. Study sample consisted of 23 patients with probable Parkinson’s disease and 71 control subjects resulting in 654 nights of actigraphy and sleep diary data, with 26 unique features per night. XGBoost classifier was trained to distinguish the groups, scoring 80% accuracy and 52% F1 on test data. Actigraphy based parameters targeted on wake analysis during sleep were marked as most important. The study provided classifier and obtained the most important parameters to identify patients with Parkinson’s disease based on actigraphy and sleep diary data.
Description
Citation
Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 281-285. ISBN 978-80-214-6030-0
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií